

Higher Mathematics 2024 Paper 2

Time allowed = 1 hr 30 mins

Marks available = 65

For each question, you can click below to view the worked solutions for each question. You can also view this paper's marking scheme below;

www.sqa.org.uk/pastpapers/papers/instructions/2024/mi_NH_Mathematics_Paper-2_2024.pdf

Remember to record your percentage for this paper in your analysis grid (your score \div 65 × 100).

FORMULAE LIST

Circle

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a,b) and radius r.

Scalar product

 $\mathbf{a}.\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

or
$$\mathbf{a.b} = a_1b_1 + a_2b_2 + a_3b_3 \text{ where } \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Trigonometric formulae

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2 \cos^2 A - 1$$

$$= 1 - 2 \sin^2 A$$

Table of standard derivatives

f(x)	f'(x)
sin ax	a cos ax
cos ax	$-a\sin ax$

Table of standard integrals

f	f(x)	$\int f(x)dx$
si	n ax	$-\frac{1}{a}\cos ax + c$
co	os ax	$\frac{1}{a}\sin ax + c$

Total marks — 65 Attempt ALL questions

1. Triangle ABC has vertices A (-3, 8), B (-1, -6) and C (11, 0).

(a) Find the equation of the median through B.

- 3
- (b) Find the equation of L, the line perpendicular to BC passing through C.
- 3
- (c) Determine the coordinates of the point of intersection of the median through B and the line L.

2

Click here to view the video solutions.

Video Lessons: 1.8 Bronze Outcome 1, 1.6 Silver Outcome 2 and 1.9 Silver Outcome 2

2. A curve has equation $y = \frac{8}{x^3}$, x > 0.

Find the equation of the tangent to this curve at the point where x = 2.

5

Click here to view the video solutions.

Video Lesson: 6.3 Silver Outcome 2

- 3. The coordinates of points D, E and F are given by D (2, -3, 4), E (1, 1, -2) and F (3, 2, 1).
 - (a) Express \overrightarrow{ED} and \overrightarrow{EF} in component form.

2

(i) Calculate ED. EF. (b)

1

(ii) Hence, or otherwise, calculate the size of angle DEF.

Click here to view the video solutions.

Video Lesson: 12.5 Outcome 1

4. The diagram shows the graph of a quartic function y = f(x). A maximum turning point occurs at (-1,3).

The graph of y = f(x) also has a point of inflection at x = 2.

- (a) Determine the coordinates of the maximum turning point on the graph of y = f(x-4) + 2.
- 3

2

(b) On the diagram in your answer booklet, sketch the graph of y = f'(x).

Click here to view the video solutions.

Video Lessons: 4:1 Gold Outcome 3, 6:4 Gold Outcome 3

5. Evaluate
$$\int_{0}^{\frac{\pi}{7}} \sin 5x \ dx.$$

3

Click here to view the video solutions.

Video Lesson: 13.2 Silver Outcome 2

6. Two variables, x and y, are connected by the equation $y = ax^b$. The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown.

Find the values of a and b.

5

Click here to view the video solutions.

Video Lessons: 14.4 Gold Outcome 3

7. The diagram shows the curve with equation $y = x^3 - 6x^2 + 11x$ intersecting the curve with equation $y = 6 + 4x - 2x^2$ at x = 2.

Calculate the shaded area.

5

Click here to view the video solutions.

Video Lesson: 9.4 Gold Outcome 3

8. Functions f and g are defined on \mathbb{R} , the set of real numbers, by:

- $f(x) = 2x^2 18$
- g(x) = x + 1.
- (a) Find an expression for f(g(x)).

2

(b) Find the values of x for which $\frac{1}{f(g(x))}$ is undefined.

2

Click here to view the video solutions.

Video Lessons: 3.2 Silver Outcome 2, 3.1 Bronze Outcome 1

9. (a) Determine the coordinates of the stationary points on the curve with equation $y = \frac{1}{3}x^3 - x^2 - 3x + 1$.

4

(b) Hence, determine the greatest and least values of y in the interval $-1 \le x \le 6$.

2

Click here to view the video solutions.

Video Lesson: 6.6 Outcome 1

10. The circle C₁ has equation $x^2 + y^2 + 18x - 2y - 8 = 0$.

2

(a) Find the centre and radius of C_1 .

A second circle, C_2 , touches C_1 internally.

The centre of C_2 is (-6, 0).

(b) Determine the equation of C₂.

2

Click here to view the video solutions.

Video Lessons: 11.1 Bronze Outcome 1 and Gold Outcome 3

11. The number of electric vehicles worldwide can be modelled by

$$N = 6.8e^{kt}$$

where:

- N is the estimated number of vehicles in millions
- t is the number of years since the end of 2020
- k is a constant.
- (a) Use the model to estimate the number of electric vehicles worldwide at the end of 2020.

1

At the end of 2030, it is estimated there will be 125 million electric vehicles worldwide.

(b) Determine the value of k.

4

Click here to view the video solutions.

Video Lesson: 14.3 Gold Outcome 3

12. Solve the equation $2\sin 2x^{\circ} - \sin^2 x^{\circ} = 0$, $0 \le x < 360$.

5

Click here to view the video solutions.

Video Lesson: 10.2 Gold Outcome 3

13. The diagram shows the graph of y = f(x), where f(x) is a quartic function.

Express f(x) in the form $f(x) = k(x+a)^2(x+b)(x+c)$.

3

Click here to view the video solutions.

Video Lesson: 8.1 Gold Outcome 3

[END OF QUESTION PAPER]