


# Higher Mathematics 2023 Paper 2



Time allowed = 1 hr 30 mins

Marks available = 65

For each question, you can click below to view the worked solutions for each question. You can also view this paper's marking scheme below;

www.sqa.org.uk/pastpapers/papers/instructions/2023/mi\_NH\_Mathematics\_Paper-2\_2023.pdf

Remember to record your percentage for this paper in your analysis grid (your score  $\div$  65 × 100).

### **FORMULAE LIST**

#### Circle

The equation  $x^2 + y^2 + 2gx + 2fy + c = 0$  represents a circle centre (-g, -f) and radius  $\sqrt{g^2 + f^2 - c}$ .

The equation  $(x-a)^2 + (y-b)^2 = r^2$  represents a circle centre (a,b) and radius r.

Scalar product

 $\mathbf{a}.\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \theta$ , where  $\theta$  is the angle between  $\mathbf{a}$  and  $\mathbf{b}$ 

or 
$$\mathbf{a.b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ .

Trigonometric formulae

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2 \sin A \cos A$$

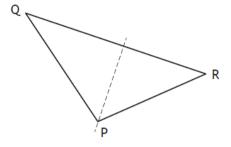
$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2 \cos^2 A - 1$$

$$= 1 - 2 \sin^2 A$$

Table of standard derivatives

| f(x)   | f'(x)       |
|--------|-------------|
| sin ax | a cos ax    |
| cos ax | $-a\sin ax$ |


Table of standard integrals

| f(x)   | $\int f(x)dx$             |
|--------|---------------------------|
| sin ax | $-\frac{1}{a}\cos ax + c$ |
| cos ax | $\frac{1}{a}\sin ax + c$  |



## Total marks — 65 Attempt ALL questions

1. Triangle PQR has vertices P(5, -1), Q(-2, 8) and R(13, 3).



- (a) Find the equation of the altitude from P.
- (b) Calculate the angle that the side PR makes with the positive direction of the x-axis.

2

3

Click here to view the video solutions.

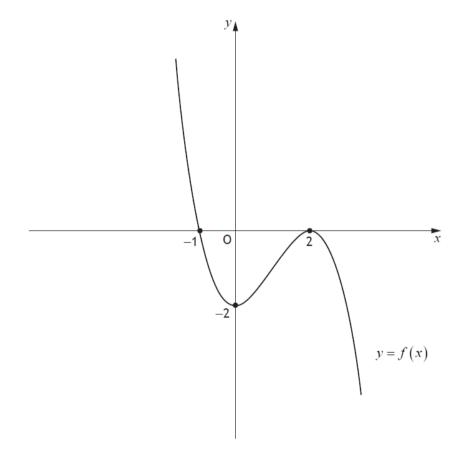
Video Lessons: 1.8 Silver Outcome 2, 1.3 Gold Outcome 3

2. Find the equation of the tangent to the curve with equation  $y = 2x^5 - 3x$  at the point where x = 1.

7

Click here to view the video solutions.

Video Lesson: 6.3 Silver Outcome 2


3. Find 
$$\int 7\cos\left(4x+\frac{\pi}{3}\right)dx$$
.

2

Click here to view the video solutions.

Video Lesson: 13.2 Silver Outcome 2

**4.** The diagram shows the cubic graph of y = f(x), with stationary points at (2, 0) and (0, -2).



On the diagram in your answer booklet, sketch the graph of y = 2f(-x).

2

Click here to view the video solutions.

Video Lesson: 4.1 Gold Outcome 3

5. A function, f, is defined by  $f(x) = (3-2x)^4$ , where  $x \in \mathbb{R}$ . Calculate the rate of change of f when x = 4.

3

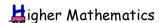
Click here to view the video solutions.

Video Lesson: 13.1 Bronze Outcome 1

6. A function f(x) is defined by  $f(x) = \frac{2}{x} + 3$ , x > 0. Find the inverse function,  $f^{-1}(x)$ .

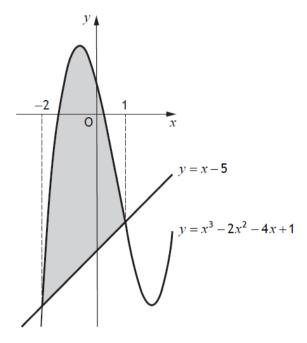
3

Click here to view the video solutions.


Video Lessons: 3.3 Outcome 1

7. Solve the equation  $\sin x^{\circ} + 2 = 3\cos 2x^{\circ}$  for  $0 \le x < 360$ .

5


Click here to view the video solutions.

Video Lesson: 10.2 Gold Outcome 3



8. The diagram shows part of the curve with equation  $y = x^3 - 2x^2 - 4x + 1$  and the line with equation y = x - 5.

The curve and the line intersect at the points where x = -2 and x = 1.



Calculate the shaded area.

5

Click here to view the video solutions.

Video Lesson: 9.4 Silver Outcome 2

- 9. (a) Express  $7\cos x^{\circ} 3\sin x^{\circ}$  in the form  $k\sin(x+a)^{\circ}$  where k > 0, 0 < a < 360.
  - (b) Hence, or otherwise, find:
    - (i) the maximum value of  $14\cos x^{\circ} 6\sin x^{\circ}$

1

(ii) the value of x for which it occurs where  $0 \le x < 360$ .

2

Click here to view the video solutions.

Video Lessons: 15·1 Silver Outcome 2, 15·2 Silver Outcome 2

10. Determine the range of values of x for which the function  $f(x) = 2x^3 + 9x^2 - 24x + 6$  is strictly decreasing.

1

Click here to view the video solutions.

Video Lesson: 6.4 Bronze Outcome 1

- 11. Circle C<sub>1</sub> has equation  $(x-4)^2 + (y+2)^2 = 37$ . Circle C<sub>2</sub> has equation  $x^2 + y^2 + 2x - 6y - 7 = 0$ .
  - (a) Calculate the distance between the centres of  $C_1$  and  $C_2$ .
  - (b) Hence, show that C<sub>1</sub> and C<sub>2</sub> intersect at two distinct points.

Click here to view the video solutions.

Video Lesson: 11.4 Bronze Outcome 1

12. A curve, for which  $\frac{dy}{dx} = 8x^3 + 3$ , passes through the point (-1, 3). Express y in terms of x.

4

Click here to view the video solutions.

Video Lesson: 9.3 Outcome 1

13. A patient is given a dose of medicine.

The concentration of the medicine in the patient's blood is modelled by

$$C_t = 11e^{-0.0053 t}$$

where:

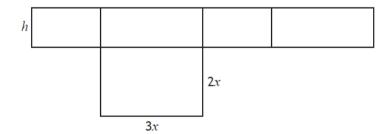
- ullet t is the time, in minutes, since the dose of medicine was given
- $C_t$  is the concentration of the medicine, in mg/l, at time t.
- (a) Calculate the concentration of the medicine 30 minutes after the dose was given.

1

The dose of medicine becomes ineffective when its concentration falls to 0.66 mg/l.

(b) Calculate the time taken for this dose of the medicine to become ineffective.

3


Click here to view the video solutions.

Video Lesson: 14.3 Gold Outcome 3

14. A net of an open box is shown.

The box is a cuboid with height h centimetres.

The base is a rectangle measuring 3x centimetres by 2x centimetres.



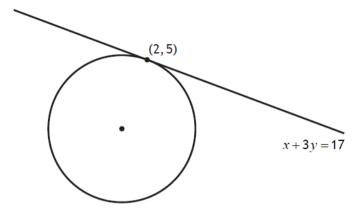
(a) (i) Express the area of the net,  $A \text{ cm}^2$ , in terms of h and x.

1

(ii) Given that  $A = 7200 \text{ cm}^2$ , show that the volume of the box,  $V \text{ cm}^3$ , is given by  $V = 4320x - \frac{18}{5}x^3$ .

2

(b) Determine the value of x that maximises the volume of the box.


4

Click here to view the video solutions.

Video Lesson: 6.7 Outcome 1



15. The line x + 3y = 17 is a tangent to a circle at the point (2, 5).



The centre of the circle lies on the y-axis.

Find the coordinates of the centre of the circle.

4

Click here to view the video solutions.

Video Lesson: 11.2 Gold Outcome 3

## [END OF QUESTION PAPER]