

Higher Mathematics 2023 Paper 1

Time allowed = 1 hr 15 mins

Marks available = 55

For each question, you can click below to view the worked solutions for each question. You can also view this paper's marking scheme below;

www.sqa.org.uk/pastpapers/papers/instructions/2023/mi_NH_Mathematics_Paper-1-Non-Calculator_2023.pdf

Remember to record your percentage for this paper in your analysis grid (your score ÷ 55 × 100).

FORMULAE LIST

Circle

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a,b) and radius r.

Scalar product

 $\mathbf{a}.\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

or
$$\mathbf{a.b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2 \cos^2 A - 1$$

$$= 1 - 2 \sin^2 A$$

Table of standard derivatives

f(x)	<i>f</i> ′(<i>x</i>)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

3

Total marks — 55 Attempt ALL questions

1. Given that
$$y = x^{\frac{5}{3}} - \frac{10}{x^4}$$
, where $x \neq 0$, find $\frac{dy}{dx}$.

Click here to view the worked solutions.

Video Lesson: 6.1 Silver Outcome 2

2. P and Q are the points (-2,6) and (10,0). Find the equation of the perpendicular bisector of PQ.

4

Click here to view the worked solutions.

Video Lesson: 1.8 Gold Outcome 3

3. Solve
$$\log_5 x - \log_5 3 = 2$$
.

3

Click here to view the worked solutions.

Video Lesson: 14.2 Silver Outcome 2

4. The diagram shows two right-angled triangles with angles p and q as marked.

- (a) Determine the value of:
 - (i) $\cos p$
 - (ii) $\cos q$.
- (b) Hence determine the value of $\cos(p+q)$.

Click here to view the worked solutions.

Video Lesson: 10.1 Gold Outcome 3

5. The equation $2x^2 + (3p-2)x + p = 0$ has equal roots. Determine the possible values of p.

3

Click here to view the worked solutions.

Video Lesson: 8.4 Gold Outcome 3

6. Find
$$\int (2x^5 - 6\sqrt{x}) dx$$
, $x \ge 0$.

4

Click here to view the worked solutions.

Video Lesson: 9.1 Silver Outcome 2

7. (a) Evaluate $\log_2 5 + \log_2 \frac{1}{40}$.

- 2
- (b) Given that $a \in \mathbb{R}$ and that $\log_8 a$ is negative, state the range of possible values of a.

1

Click here to view the worked solutions.

Video Lesson: 14.1 Silver Outcome 2

8. A function, f, is defined on \mathbb{R} , the set of real numbers, by $f(x) = x^3 + 3x^2 - 9x + 5$. Find the coordinates of the stationary points of f and determine their nature.

6

Click here to view the worked solutions.

Video Lessons: 6.5 Bronze Outcome 1, Silver Outcome 2

9. The diagram shows the graph of the function $f(x) = \log_3 x$, where x > 0.

The inverse function, f^{-1} , exists.

On the diagram in your answer booklet, sketch the graph of $y=f^{-1}(x)-1$.

Click here to view the worked solutions.

Video Lesson: 4.2 Gold Outcome 3

10. (a) Show that (x+5) is a factor of $x^4 + 3x^3 - 7x^2 + 9x - 30$.

2

(b) Hence, or otherwise, solve $x^4 + 3x^3 - 7x^2 + 9x - 30 = 0$, $x \in \mathbb{R}$.

5

Click here to view the worked solutions.

Video Lesson: 7.1 Gold Outcome 3

11. (a) Evaluate
$$\int_{\frac{\pi}{2}}^{\pi} (5\sin x - 3\cos x) dx$$
.

The diagram in your answer booklet shows the graphs with equations $y=5\sin x$ and $y=3\cos x$, $0\le x\le 2\pi$.

(b) On the diagram in your answer booklet, shade the area represented by the integral in (a).

1

Click here to view the worked solutions.

Video Lessons: 13.2 Gold Outcome 2

12. Express $-2x^2 - 12x + 7$ in the form $a(x+b)^2 + c$.

3

Click here to view the worked solutions.

Video Lessons: 8.2 Silver Outcome 2

13. Functions f and g are defined by:

•
$$f(x) = 2 \sin x$$
, where $0 < x < \frac{\pi}{2}$

•
$$g(x) = 2x$$
, where $0 < x < \frac{\pi}{4}$

(a) (i) Evaluate
$$f\left(g\left(\frac{\pi}{6}\right)\right)$$
.

- (ii) Determine an expression for f(g(x)).
- (b) (i) Given that $f(p) = \frac{1}{3}$, determine the exact value of $\sin p$.
 - (ii) Hence, determine the exact value of f(g(p)).

Click here to view the worked solutions.

Video Lessons: 3.2 Silver Outcome 2, 10.1 Bronze Outcome 1

[END OF QUESTION PAPER]