

SQA Past paper questions

2023 - Paper 2 - Question 2

Find the equation of the tangent to the curve with equation $y = 2x^5 - 3x$ at the point where x = 1.

Click here for video solution.

2018 - Paper 1 - Question 7

The curve with equation $y = x^3 - 3x^2 + 2x + 5$ is shown on the diagram.

- (a) Write down the coordinates of P, the point where the curve crosses the y-axis.
- (b) Determine the equation of the tangent to the curve at P.
- (c) Find the coordinates of Q, the point where this tangent meets the curve again. 4

2015 - Paper 1 - Question 2

Find the equation of the tangent to the curve $y = 2x^3 + 3$ at the point where x = -2.

Click here for video solution.

1

3

2015 - Paper 1 - Question 21

- (a) Show that (x-1) is a factor of $x^3 6x^2 + 9x 4$ and hence factorise $x^3 - 6x^2 + 9x - 4$ fully.
- (b) The diagram shows the graph with equation $y = x^3 6x^2 + 11x 3$.

- Find the equation of the tangent to the curve $y = x^3 6x^2 + 11x 3$ at the point A(1, 3).
- (ii) Hence find the coordinates of B, the point of intersection of this tangent with the curve.

3

3

Click here for video solution.

2014 - Paper 2 - Question 2

A curve has equation $y = x^4 - 2x^3 + 5$.

Find the equation of the tangent to this curve at the point where x = 2.

Click <u>here</u> for video solution.

Exemplar - Paper 1 - Question 1

The point P (5,12) lies on the curve with equation $y = x^2 - 4x + 7$.

Find the equation of the tangent to this curve at P.

3

2008 - Paper 1 - Question 22

Ligher Mathematics

The diagram shows a sketch of the curve with equation $y = x^3 - 6x^2 + 8x$.

- (a) Find the coordinates of the points on the curve where the gradient of the tangent is -1.
- (b) The line y = 4 x is a tangent to this curve at a point A. Find the coordinates of A.

2

5

Click here for video solution.

Specimen 1 - Paper 2 - Question 4

The diagram shows a parabola with equation $y = 2x^2 - 2x + 3$.

A tangent to the parabola has been drawn at P(1, 3).

Find the equation of this tangent.

Click here for video solution.

2007 - Paper 2 - Question 5

A circle centre C is situated so that it touches the parabola with equation $y = \frac{1}{2}x^2 - 8x + 34$ at P and Q.

- (a) The gradient of the tangent to the parabola at Q is 4. Find the coordinates of Q.
- (b) Find the coordinates of P.
- (c) Find the coordinates of C, the centre of the circle.

5

2006 - Paper 2 - Question 3

The parabola with equation $y = x^2 - 14x + 53$ has a tangent at the point P(8, 5).

(a) Find the equation of this tangent.

(b) Show that the tangent found in (a) is also a tangent to the parabola with equation $y = -x^2 + 10x - 27$ and find the coordinates of the point of contact Q.

Click here for video solution.

The diagram shows the graph of $y = \frac{24}{\sqrt{x}}$, x > 0.

Find the equation of the tangent at P, where x = 4.

Click here for video solution.

2004 - Paper 2 - Question 5

The point P(x, y) lies on the curve with equation $y = 6x^2 - x^3$.

- (a) Find the value of x for which the gradient of the tangent at P is 12. 5
- (b) Hence find the equation of the tangent at P.

2

2001 - Paper 2 - Question 2

A curve has equation $y = x - \frac{16}{\sqrt{x}}$, x > 0.

Find the equation of the tangent at the point where x = 4. 6

Click here for video solution.

1999 - Paper 1 - Question 9

The point P(-1, 7) lies on the curve with equation $y = 5x^2 + 2$. Find the equation of the tangent to the curve at P. (4)