

SQA Past paper questions

2023 - Paper 1 - Question 4

The diagram shows two right-angled triangles with angles p and q as marked.

(a) Determine the value of:

(i) $\cos p$

1

(ii) $\cos q$.

1

(b) Hence determine the value of $\cos(p+q)$. 3

Click here for video solution.

2023 - Paper 1 - Question 13

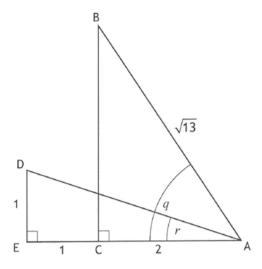
Functions f and g are defined by:

- $f(x) = 2\sin x$, where $0 < x < \frac{\pi}{2}$
- g(x) = 2x, where $0 < x < \frac{\pi}{4}$
- (i) Evaluate $f\left(g\left(\frac{\pi}{6}\right)\right)$.

1

(ii) Determine an expression for f(g(x)).

2


- (i) Given that $f(p) = \frac{1}{3}$, determine the exact value of $\sin p$. (b)
 - 3

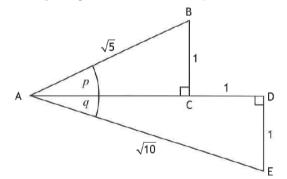
(ii) Hence, determine the exact value of f(g(p)).

Triangles ABC and ADE are both right angled.

Angle BAC = q and angle DAE = r as shown in the diagram.

(a) Determine the value of:

1 (i) $\sin r$ 1 (ii) $\sin q$.


3 (b) Hence determine the value of $\sin(q-r)$.

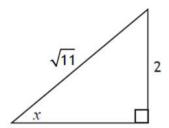
Click here for video solution.

2019 - Paper 1 - Question 13

Triangles ABC and ADE are both right angled. Angles p and q are as shown in the diagram.

(a) Determine the value of

(i) $\cos p$ 1


(ii) $\cos q$. 1

(b) Hence determine the value of $\sin(p+q)$. 3

The right-angled triangle in the diagram is such that $\sin x = \frac{2}{\sqrt{11}}$ and $0 < x < \frac{\pi}{4}$.

(a) Find the exact value of:

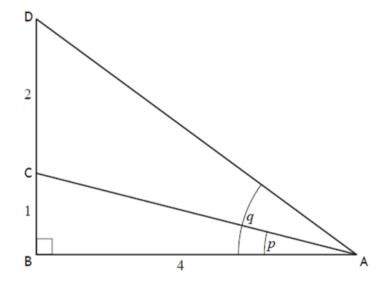
(i) $\sin 2x$

3

(ii) cos 2x.

1

(b) By expressing $\sin 3x$ as $\sin (2x+x)$, find the exact value of $\sin 3x$.


3

Click here for video solution.

2016 - Paper 1 - Question 13

Triangle ABD is right-angled at B with angles BAC = p and BAD = q and lengths as shown in the diagram below.

Show that the exact value of $\cos(q-p)$ is $\frac{19\sqrt{17}}{85}$.

5

 $\tan 2x = \frac{3}{4}$, $0 < x < \frac{\pi}{4}$, find the exact value of

(a) $\cos 2x$

1

(b) $\cos x$.

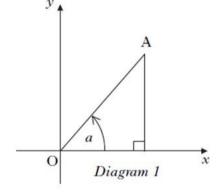
2

Click here for video solution.

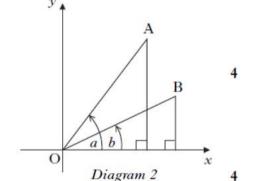
Specimen - Paper 1 - Question 6

(a) Find an equivalent expression for $\sin(x + 60)^{\circ}$.

1


(b) Hence, or otherwise, determine the exact value of sin 105°.

Click here for video solution.


2010 - Paper 2 - Question 23

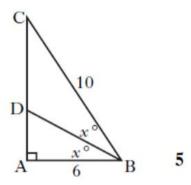
- (a) Diagram 1 shows a right angled triangle, where the line OA has equation 3x - 2y = 0.
 - (i) Show that $\tan a = \frac{3}{2}$.
 - (ii) Find the value of sina.

(b) A second right angled triangle is added as shown in Diagram 2.

The line OB has equation 3x - 4y = 0. Find the values of $\sin b$ and $\cos b$.

- (c) (i) Find the value of sin(a-b).
 - (ii) State the value of $\sin(b-a)$.

- (a) Using the fact that $\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$, find the exact value of $\sin\left(\frac{7\pi}{12}\right)$. 3
- (b) Show that sin(A + B) + sin(A B) = 2sin A cos B. 2
- (c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
 - (ii) Hence or otherwise find the exact value of $\sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)$.


Click here for video solution.

Triangle ABC is right-angled at A and BD is the bisector of angle ABC.

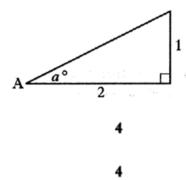
AB = 6 units and CB = 10 units.

Determine the exact value of BD, expressing your answer in its simplest form.

Click here for video solution.

2007 - Paper 2 - Question 2

The diagram shows two right-angled triangles with angles c and d marked as shown.


- (a) Find the exact value of $\sin(c+d)$.
- (b) (i) Find the exact value of $\sin 2c$.
 - (ii) Show that cos 2d has the same exact value.

The diagram shows a right-angled triangle with height 1 unit, base 2 units and an angle of a° at A.

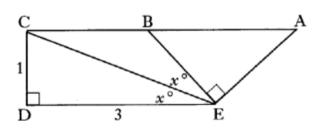
- (a) Find the exact values of:
 - (i) $\sin a^{\circ}$;
 - (ii) $\sin 2a^{\circ}$.
- (b) By expressing $\sin 3a^{\circ}$ as $\sin (2a + a)^{\circ}$, find the exact value of $\sin 3a^{\circ}$.

Click here for video solution.

2005 - Paper 2 - Question 2

Triangles ACD and BCD are right-angled at D with angles p and q and lengths as shown in the diagram.

- (a) Show that the exact value of $\sin(p+q)$ is $\frac{84}{85}$.
- (b) Calculate the exact values of:
 - (i) $\cos(p+q)$;
 - (ii) tan(p+q).


15 3

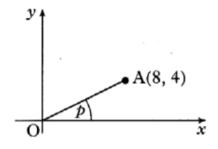
Click <u>here</u> for video solution.

2004 - Paper 1 - Question 10

In the diagram angle DEC = angle CEB = x° and angle CDE = angle BEA = 90° . CD = 1 unit; DE = 3 units.

By writing angle DEA in terms of x° , find the exact value of cos(DÊA).

Click here for video solution.

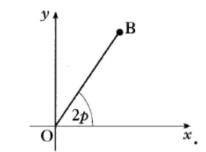

7

Ligher Mathematics

2003 - Paper 1 - Question 10

A is the point (8, 4). The line OA is inclined at an angle p radians to the x-axis.

- (a) Find the exact values of:
 - (i) $\sin(2p)$;
 - (ii) cos(2p).

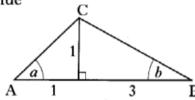

5

1

4

The line OB is inclined at an angle 2p radians to the x-axis.

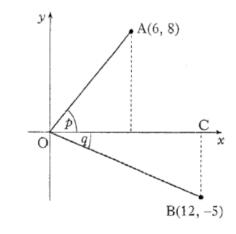
(b) Write down the exact value of the gradient of OB.


Click here for video solution.

2000 - Paper 1 - Question 1

In triangle ABC, show that the exact value

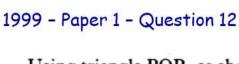
of $\sin(a+b)$ is $\frac{2}{\sqrt{5}}$.

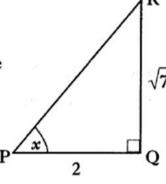

Click here for video solution.

1999 - Paper 1 - Question 1

On the coordinate diagram shown, A is the point (6, 8) and B is the point (12, -5). Angle AOC = p and angle COB = q.

Find the exact value of sin(p+q).





If x° is an acute angle such that $\tan x^{\circ} = \frac{4}{3}$, show that the exact value of $\sin(x+30)^{\circ}$ is $\frac{4\sqrt{3}+3}{10}$.

Click here for video solution.

Using triangle PQR, as shown, find the exact value of $\cos 2x$.

Click here for video solution.

Given that
$$\tan \alpha = \frac{\sqrt{11}}{3}$$
, $0 < \alpha < \frac{\pi}{2}$, find the exact value of $\sin 2\alpha$. (3)

(3)

Click here for video solution.

For scute angles P and Q,
$$\sin P = \frac{12}{13}$$
 and $\sin Q = \frac{2}{5}$.
Show that the exact value of $\sin(P+Q)$ is $\frac{63}{65}$. (3)

Given that
$$\sin A = \frac{3}{4}$$
, where $0 < A < \frac{\pi}{2}$, find the exact value of $\sin 2A$. (3)