SQA Past paper questions ## 2023 - Paper 2 - Question 11 Circle C₁ has equation $(x-4)^2 + (y+2)^2 = 37$. Circle C₂ has equation $x^2 + y^2 + 2x - 6y - 7 = 0$. - (a) Calculate the distance between the centres of C_1 and C_2 . 3 - 3 (b) Hence, show that C₁ and C₂ intersect at two distinct points. Click here for video solution. # 2022 - Paper 1 - Question 14 C_1 is the circle with equation $(x-7)^2 + (y+5)^2 = 100$. (i) State the centre and radius of C1. (a) 2 2 (ii) Hence, or otherwise, show that the point P(-2,7) lies outside C_1 . 2 C_2 is a circle with centre P and radius r. (b) Determine the value(s) of r for which circles C_1 and C_2 have exactly one point of Click <u>here</u> for video solution. 1 2 2 3 ### 2018 - Paper 2 - Question 12 Circle C₁ has equation $(x-13)^2 + (y+4)^2 = 100$. Circle C₂ has equation $x^2 + y^2 + 14x - 22y + c = 0$. - (i) Write down the coordinates of the centre of C1. - (ii) The centre of C₁ lies on the circumference of C₂. Show that c = -455. The line joining the centres of the circles intersects C_1 at P. - (i) Determine the ratio in which P divides the line joining the centres of the - (ii) Hence, or otherwise, determine the coordinates of P. P is the centre of a third circle, C_3 . C₂ touches C₃ internally. (c) Determine the equation of C₃. Click here for video solution. ### 2017 - Paper 2 - Question 10 (a) Show that the points A(-7, -2), B(2, 1) and C(17, 6) are collinear. Three circles with centres A, B and C are drawn inside a circle with centre D as shown. The circles with centres A, B and C have radii $r_{\rm A}$, $r_{\rm B}$ and $r_{\rm C}$ respectively. $$r_{\Delta} = \sqrt{10}$$ • $$r_{\rm B} = 2r_{\rm A}$$ $$r_{\rm C} = r_{\rm A} + r_{\rm B}$$ (b) Determine the equation of the circle with centre D. Click here for video solution. **H**igher Mathematics ### 2016 - Paper 2 - Question 4 Circles C₁ and C₂ have equations $(x+5)^2 + (y-6)^2 = 9$ and $x^2 + y^2 - 6x - 16 = 0$ respectively. - (a) Write down the centres and radii of C₁ and C₂. 4 - (b) Show that C₁ and C₂ do not intersect. 3 Click here for video solution. # 2015 - Paper 2 - Question 5 Circle C₁ has equation $x^2 + y^2 + 6x + 10y + 9 = 0$. The centre of circle C_2 is (9, 11). Circles C_1 and C_2 touch externally. (a) Determine the radius of C₂. A third circle, C₃, is drawn such that: - both C_1 and C_2 touch C_3 internally - the centres of C_1 , C_2 and C_3 are collinear. - (b) Determine the equation of C₃. Click here for video solution. #### 2011 - Paper 2 - Question 7 Circle C₁ has equation $(x + 1)^2 + (y - 1)^2 = 121$. A circle C_2 with equation $x^2 + y^2 - 4x + 6y + p = 0$ is drawn inside C_1 . The circles have no points of contact. What is the range of values of p? 9 1 5 Click here for video solution. #### 2009 - Paper 2 - Question 4 - (a) Show that the point P(5, 10) lies on circle C₁ with equation $(x+1)^2 + (y-2)^2 = 100.$ - (b) PQ is a diameter of this circle as shown in the diagram. Find the equation of the tangent at Q. (c) Two circles, C2 and C3, touch circle C1 at Q. The radius of each of these circles is twice the radius of circle C₁. Find the equations of circles C2 and C3. Click here for video solution. ## 2008 - Paper 2 - Question 4 (a) Write down the centre and calculate the radius of the circle with equation $x^2 + y^2 + 8x + 4y - 38 = 0.$ 2 (b) A second circle has equation $(x-4)^2 + (y-6)^2 = 26$. Find the distance between the centres of these two circles and hence show that the circles intersect. (c) The line with equation y = 4 - x is a common chord passing through the points of intersection of the two circles. Find the coordinates of the points of intersection of the two circles. 5 Click <u>here</u> for video solution. #### 2001 - Paper 1 - Question 11 Circle P has equation $x^2 + y^2 - 8x - 10y + 9 = 0$. Circle Q has centre (-2, -1) and radius $2\sqrt{2}$. - (a) (i) Show that the radius of circle P is $4\sqrt{2}$. - (ii) Hence show that circles P and Q touch. 4 - (b) Find the equation of the tangent to circle Q at the point (-4, 1). - 3 - (c) The tangent in (b) intersects circle P in two points. Find the x-coordinates of the points of intersection, expressing your answers in the form $a \pm b\sqrt{3}$. 3 Click here for video solution. ## 1995 - Paper 2 - Question 8 When newspapers were printed by lithograph, the newsprint had to run over three rollers, illustrated in the diagram by three circles. The centres A, B and C of the three circles are collinear. The equations of the circumferences of the outer circles are $(x+12)^2+(y+15)^2=25$ and $(x-24)^2+(y-12)^2=100$. Find the equation of the central circle. Click here for video solution.