1

SQA Past paper questions

2019 - Paper 1 - Question 9

Vectors ${\bf u}$ and ${\bf v}$ have components $\begin{pmatrix} p \\ -2 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 2p+16 \\ -3 \\ 6 \end{pmatrix}$, $p \in \mathbb{R}$.

(a) (i) Find an expression for u.v.

> (ii) Determine the values of p for which \mathbf{u} and \mathbf{v} are perpendicular. 3

(b) Determine the value of p for which \mathbf{u} and \mathbf{v} are parallel. 2

Click here for video solution.

2017 - Paper 1 - Question 5

Vectors \mathbf{u} and \mathbf{v} are $\begin{pmatrix} 5\\1\\-1 \end{pmatrix}$ and $\begin{pmatrix} 3\\-8\\6 \end{pmatrix}$ respectively.

(a) Evaluate u.v.

(b)

Vector \mathbf{w} makes an angle of $\frac{\pi}{3}$ with \mathbf{u} and $|\mathbf{w}| = \sqrt{3}$. Calculate u.w.

Click here for video solution.

1

2015 - Paper 1 - Question 1

Vectors $\mathbf{u} = 8\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = -3\mathbf{i} + t\mathbf{j} - 6\mathbf{k}$ are perpendicular.

Determine the value of t.

2

Click here for video solution.

2015 - Paper 2 - Question 6

Vectors $\mathbf{p},\,\mathbf{q}$ and \mathbf{r} are represented on the diagram as shown.

- BCDE is a parallelogram
- ABE is an equilateral triangle
- |p| = 3
- Angle ABC = 90°
- (a) Evaluate p.(q+r).

- 3
- (b) Express $\overrightarrow{\text{EC}}$ in terms of $p,\,q$ and r.

3

(c) Given that $\overrightarrow{AE}.\overrightarrow{EC} = 9\sqrt{3} - \frac{9}{2}$, find $|\mathbf{r}|$.

Click here for video solution.

2009 - Paper 2 - Question 7

Vectors p, q and r are represented on the diagram shown where angle ADC = 30° .

It is also given that |p| = 4 and |q| = 3.

- (a) Evaluate $p \cdot (q + r)$ and $r \cdot (p q)$.
- (b) Find |q+r| and |p-q|.

Click here for video solution.

Rig 🌐 ur Maths

2005 - Paper 2 - Question 10

Vectors \boldsymbol{a} and \boldsymbol{c} are represented by two sides of an equilateral triangle with sides of length 3 units, as shown in the diagram.

Vector b is 2 units long and b is perpendicular to both a and c.

Evaluate the scalar product a.(a + b + c).

Click here for video solution.

2003 - Paper 1 - Question 3

Vectors \mathbf{u} and \mathbf{v} are defined by $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$.

Determine whether or not \boldsymbol{u} and \boldsymbol{v} are perpendicular to each other.

2

Click here for video solution.

2003 - Paper 2 - Question 9

The diagram shows vectors \boldsymbol{a} and \boldsymbol{b} .

If |a| = 5, |b| = 4 and $a \cdot (a + b) = 36$, find the size of the acute angle θ between \boldsymbol{a} and \boldsymbol{b} .

Click here for video solution.

2000 - Paper 2 - Question 7

For what value of t are the vectors $u = \begin{pmatrix} t \\ -2 \\ 3 \end{pmatrix}$ and $\bar{v} = \begin{pmatrix} 2 \\ 10 \\ t \end{pmatrix}$ perpendicular?

Click here for video solution.

1999 - Paper 1 - Question 17

The diagram shows two vectors \boldsymbol{a} and \boldsymbol{b} , with $|\boldsymbol{a}| = 3$ and $|\boldsymbol{b}| = 2\sqrt{2}$.

These vectors are inclined at an angle of 45° to each other.

- (a) Evaluate (i) a.a
 - (ii) b.b
 - (iii) a.b

(b) Another vector p is defined by p = 2a + 3b. Evaluate p.p and hence write down |p|.

(4)

Click here for video solution.

The diagram shows representatives of two vectors, a and b, inclined at an angle of 60°.

If |a| = 2 and |b| = 3, evaluate $a \cdot (a + b)$.

Click here for video solution.

Diagram 4 shows a right-angled isosceles triangle whose sides represent the vectors a, b and c. The two equal sides have length 2 units.

Find the value of b. (a + b + c).

Click here for video solution.

1989 - Paper 1 - Question 9

The sides of this equilateral triangle are 2 units long and represent the vectors a, b and c as shown in the diagram.

Evaluate $a \cdot (a + b + c)$.

Click here for video solution.

(5)