

SQA Past paper questions

2019 - Paper 2 - Question 14

The vectors **u** and **v** are such that

- $|{\bf u}| = 4$
- $|\mathbf{v}| = 5$
- $\mathbf{u}.(\mathbf{u}+\mathbf{v})=21$

Determine the size of the angle between the vectors **u** and **v**.

Click <u>here</u> for video solution.

2018 - Paper 2 - Question 2

Vectors \mathbf{u} and \mathbf{v} are defined by $\mathbf{u} = \begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -7 \\ 8 \\ 5 \end{pmatrix}$.

- (a) Find u.v.
- (b) Calculate the acute angle between ${\bf u}$ and ${\bf v}$.

Click here for video solution.

2017 - Paper 2 - Question 5

In the diagram, $\overrightarrow{PR} = 9i + 5j + 2k$ and $\overrightarrow{RQ} = -12i - 9j + 3k$.

(a) Express PQ in terms of i, j and k.

The point S divides QR in the ratio 1:2.

- (b) Show that $\overrightarrow{PS} = \mathbf{i} \mathbf{j} + 4\mathbf{k}$.
- (c) Hence, find the size of angle QPS.

The picture shows a model of a water molecule.

Relative to suitable coordinate axes, the oxygen atom is positioned at point A(-2, 2, 5).

The two hydrogen atoms are positioned at points B(-10, 18, 7) and C(-4, -6, 21)as shown in the diagram below.

- (a) Express \overrightarrow{AB} and \overrightarrow{AC} in component form.
- (b) Hence, or otherwise, find the size of angle BAC.

2

2

5

Click here for video solution.

2014 - Paper 2 - Question 4

Six identical cuboids are placed with their edges parallel to the coordinate axes as shown in the diagram.

A and B are the points (8, 0, 0) and (11, 4, 2) respectively.

- (a) State the coordinates of C and D.
- (b) Determine the components of \overrightarrow{CB} and \overrightarrow{CD} .
- (c) Find the size of the angle BCD.

Click here for video solution.

2

D,OABC is a square based pyramid as shown in the diagram below.

O is the origin, D is the point (2, 2, 6) and OA = 4 units.

M is the mid-point of OA.

(a) State the coordinates of B.

1

(b) Express DB and DM in component form.

3

(c) Find the size of angle BDM.

5

Click here for video solution.

2010 - Paper 2 - Question 1

The diagram shows a cuboid OPQR,STUV relative to the coordinate axes.

P is the point (4, 0, 0), Q is (4, 2, 0) and U is (4, 2, 3).

M is the midpoint of OR.

N is the point on UQ such that $UN = \frac{1}{3}UQ$.

- (a) State the coordinates of M and N.
- 2
- (b) Express VM and VN in component form.
- 2
- (c) Calculate the size of angle MVN.
- 5

The diagram shows a cuboid OABC, DEFG.

F is the point (8, 4, 6).

P divides AE in the ratio 2:1.

Q is the midpoint of CG.

- (a) State the coordinates of P and Q.
- (b) Write down the components of PQ and PA.
- (c) Find the size of angle QPA.

Click here for video solution.

Specimen 1 - Paper 2 - Question 2

The diagram shows wire a framework in the shape of a cuboid with the edges parallel to the axes.

Relative to these axes, A, B, C and H have coordinates (1, 3, 4), (2, 3, 4), (2, 7, 4) and (1, 7, 9) respectively.

- (a) State the lengths of AB, AD and AE.
- (b) Write down the components of HB and HC and hence or otherwise calculate the size of angle BHC.

7

Click here for video solution.

Specimen 2 - Paper 2 - Question 1

Given that
$$\overrightarrow{QP} = \begin{pmatrix} -1\\3\\-2 \end{pmatrix}$$
 and $\overrightarrow{QR} = \begin{pmatrix} -5\\1\\1 \end{pmatrix}$, find the size of angle PQR. 5

OABCDEFG is a cube with side 2 units, as shown in the diagram.

B has coordinates (2, 2, 0).

P is the centre of face OCGD and Q is the centre of face CBFG.

1

2

5

1

3

- (a) Write down the coordinates of G.
- (b) Find p and q, the position vectors of points P and Q. 2
- (c) Find the size of angle POQ. 5

Click here for video solution.

 \boldsymbol{u} and \boldsymbol{v} are vectors given by $\boldsymbol{u} = \begin{pmatrix} k^3 \\ 1 \\ k+2 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} 1 \\ 3k^2 \\ -1 \end{pmatrix}$, where k > 0.

- (a) If $u \cdot v = 1$, show that $k^3 + 3k^2 k 3 = 0$.
- (b) Show that (k + 3) is a factor of $k^3 + 3k^2 k 3$ and hence factorise $k^3 + 3k^2 - k - 3$ fully.
- (c) Deduce the only possible value of k.
- (d) The angle between \boldsymbol{u} and \boldsymbol{v} is $\boldsymbol{\theta}$. Find the exact value of $\cos \boldsymbol{\theta}$.

The sketch shows the positions of Andrew(A), Bob(B) and Tracy(T) on three hill-tops.

Relative to a suitable origin, the coordinates (in hundreds of metres) of the three people are A(23, 0, 8), B(-12, 0, 9) and T(28, -15, 7).

In the dark, Andrew and Bob locate Tracy using heat-seeking beams.

- (a) Express the vectors TA and TB in component form.
- (b) Calculate the angle between these two beams.

Click here for video solution.

2

5

2004 - Paper 2 - Question 2

P, Q and R have coordinates (1, 3, -1), (2, 0, 1) and (-3, 1, 2) respectively.

- (a) Express the vectors \overrightarrow{QP} and \overrightarrow{QR} in component form. 2
- (b) Hence or otherwise find the size of angle PQR.

Click <u>here</u> for video solution.

The diagram shows a square-based pyramid of height 8 units.

Square OABC has a side length of 6 units.

The coordinates of A and D are (6, 0, 0) and (3, 3, 8).

C lies on the y-axis.

- (a) Write down the coordinates of B.
- (b) Determine the components of DA and DB.
- (c) Calculate the size of angle ADB.

24 D(3, 3, 8)1 A(6, 0, 0)

