

SQA Past paper questions

 $log_5 y$

2022 - Paper 2 - Question 7

Two variables, x and y, are connected by the equation $y = kx^n$.

The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown.

Find the values of k and n.

Click here for video solution.

2019 - Paper 2 - Question 12

Two variables, x and y, are connected by the equation $y = ab^x$.

The graph of $log_4 y$ against x is a straight line as shown.

Find the values of a and b.

5

Click here for video solution.

2017 - Paper 2 - Question 9

Two variables, x and y, are connected by the equation $y = kx^n$.

The graph of $\log_2 y$ against $\log_2 x$ is a straight line as shown.

Find the values of k and n.

5

Click <u>here</u> for video solution.

2014 - Paper 1 - Question 24

Two variables, x and y, are related by the equation

$$y = ka^x$$
.

When $\log_9 y$ is plotted against x, a straight line passing through the points (0, 2)and (6, 5) is obtained, as shown in the diagram.

Find the values of k and a.

5

Click <u>here</u> for video solution.

2006 - Paper 1 - Question 14

Two variables, x and y, are connected by the law $y = a^x$. The graph of $\log_4 y$ against x is a straight line passing through the origin and the point A(6, 3). Find the value of a.

Click here for video solution.

2002 - Paper 1 - Question 11

The graph illustrates the law $y = kx^n$. If the straight line passes through A(0.5, 0) and B(0, 1), find the values of k and n.

Click here for video solution.

1990 - Paper 1 - Question 14

As shown in the diagram opposite, a set of experimental results gives a straight line graph when logicy is plotted against logicx. The straight line passes through (0, 1) and has a gradient of 2. Express y in terms of x.

Click here for video solution.

