

Outcome 2 - Multiplying out trickier brackets

Worked Example:

Use the Binomial Theorem to multiply out the brackets $\left(x - \frac{4}{r^2}\right)^3$.

- 1. Write down the corresponding row of Pascals Triangle (In this case the THIRD row)
- 2. DESCEND the powers of the first term in the bracket
- 3. ASCEND the powers of the second term in the bracket
- 4. Multiply the columns together to get the terms

		_		
1	3	3		1
<i>x</i> ³	χ^2	x		1
1	$-\frac{4}{x^2}$	$\frac{16}{x^4}$	_	$\frac{64}{x^6}$
$\left(x - \frac{1}{2}\right)$	$-\frac{4}{x^2}\bigg)^3 = x^3$	-12+	$\frac{48}{x^3}$	$-\frac{64}{x^6}$

Key Facts/Formulae: The Binomial Theorem is a quick way of multiplying out brackets with larger powers. You will need to 1 1 know Pascals triangle in order to 1 3 3 1 do this. 1 4 6 4 1

Questions...

Use the Binomial Theorem to multiply out the brackets below.

- $4 \qquad \left(x \frac{5}{x^3}\right)^2$

- $4 \qquad \left(x^2 \frac{4}{x^3}\right)^3$

Answers

$$x^2 - \frac{10}{x^2} + \frac{25}{x^6}$$

$$8x^3 - 84 + \frac{294}{x^3} - \frac{343}{x^6}$$

$$x^6 - 12x + \frac{48}{x^4} - \frac{64}{x^9}$$

$$5 27x^9 - 54x + \frac{36}{x^7} - \frac{8}{x^{15}}$$