

≪⊚

Outcome 3 - Finding specific terms in a binomial expansion

Worked Example:

Find the general term of the binomial expansion of $\left(3x + \frac{5}{x^2}\right)^{12}$ and hence find the term independent of x.

- 1. Find the general term using the formula
- 2. Simplify the general term using laws of indices
- Calculate 'r'

4. Calculate the specific term

$$\binom{n}{r}a^{n-r}b^r = \binom{12}{r}(3x)^{12-r}\left(\frac{5}{x^2}\right)^r$$

$$= {12 \choose r} 3^{12-r} x^{12-r} 5^r x^{-2r}$$

$$= {12 \choose r} 3^{12-r} 5^r x^{12-3r}$$

$$= {12 \choose 4} 3^8 5^4 x^0$$

 $12 \rightarrow 5hift \rightarrow \div \rightarrow 8$

For the term independent of x,

$$12 - 3r = 0$$
$$3r = 12$$
$$r = 4$$

$$\binom{12}{4}$$
 38 54 x^0

 $=495 \times 6561 \times 625 \times 1$

= 2029809375

Key Facts/Formulae:

The Binomial Theorem is a quick way of multiplying out brackets with larger powers.

You will need to know Pascals triangle in order to do this.

Advanced Higher Formula sheet

Binomial Theorem

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$$

where $\binom{n}{r} = nC_r = \frac{n!}{r!(n-r)!}$

formula

Questions...

- Find the general term of the binomial expansion of $\left(3x + \frac{5}{r^2}\right)^{\alpha}$ and hence find the term independent of x.
- Find the general term of the binomial expansion of $\left(2x^2 + \frac{6}{r}\right)^{\frac{1}{2}}$ and hence find the term in x^9 .
- Find the general term of the binomial expansion of $\left(x^2 + \frac{1}{v^4}\right)^6$ and hence find the term in x^4 .
- Find the general term of the binomial expansion of $\left(2x + \frac{4}{x^3}\right)^2$ and hence find the term in x^2 .
- Find the general term of the binomial expansion of $\left(6x^3 + \frac{2}{x^2}\right)^{12}$ 5 and hence find the term in x.
- Find the general term of the binomial expansion of $\left(8x \frac{3}{r^2}\right)^{-1}$ 6 and hence find the term in $\frac{1}{r^2}$.

Answers

General term = $\binom{6}{r} 3^{6-r} 5^r x^{6-3r}$

Term independent of x = 30375

General term $= \binom{9}{r} 2^{9-r} 6^r x^{18-3r}$

Term in x^9 is 1 161 216 x^9

General term $= \binom{8}{r} x^{16-6r}$

Term in x^4 is $28x^4$

General term $= \binom{10}{r} 2^{10-r} 4^r x^{10-4r}$

Term in x^2 is $184\ 320x^2$

General term $= \binom{12}{r} 6^{12-r} 2^r x^{36-5r}$ 5

Term in x is 788 299 776x

General term = $\binom{7}{r} 8^{7-r} (-3)^r x^{7-3r}$ S

Term in $\frac{1}{x^2}$ is $-\frac{30965760}{x^2}$