Name:	Date:
Question 1: A function is given by $k(x) = \frac{x}{8} + 1$. Find the inverse function $k^{-1}(x)$.	3·3 Outcome 1
Question 2: Show that $(x + 2)$ is a factor of $x^3 - 10x^2 + 8x + 64$ and hence factorise it fully.	7·1 Bronze Outcome 1
Question 3: Find the coordinates of the stationary points of the curve with equation $y = 2x^3 - 9x^2 + 12x + 5$ and determine their nature.	6.5 Bronze Outcome 1 6.5 Silver Outcome 2
Question 4: Express $-2x^2 + 8x + 7$ in the form $a(x+b)^2 + c$.	8.2 Silver Outcome 1
Question 5: Show that the line $y = 2x - 5$ is a tangent to the curve $y = x^2 - 6x + 11$ and find the coordinates of the point of contact.	8.5 Silver Outcome 2
My score:	

Exam Questions

Question 1:

The curve y = f(x) is such that $\frac{dy}{dx} = 4x - 6x^2$.

The curve passes through the point (-1, 9).

Express y in terms of x.

Question 2:

The graph of the cubic function y = f(x)is shown in the diagram. There are turning points at (1, 1) and (3, 5). Sketch the graph of y = f'(x).

3

Question 3:

Solve the equation

 $3\cos 2x^{\circ} + \cos x^{\circ} = -1$

in the interval $0 \le x \le 360$.

5

My score: