Name:	Date:
Question 1: Find the equation of the tangent at the point (9, 1) on the circle $x^2 + y^2 - 12x + 4y - 6 = 0$.	11.2 Silver Outcome 2
Question 2: Find the equation of the straight line which is perpendicular to the line with equation $2y - 2x = 1$ and which passes through the point $(-4, 10)$.	1.6 Silver Outcome 2
Question 3: A curve for which $f'(x) = 4x^3 + 9$ passes through the point (1, 6). Find $f(x)$.	9.3 Outcome 1
Question 4: Solve $2\sin 2x^{\circ} - \sqrt{3} = 0$ for $0 \le x \le 360^{\circ}$.	10·2 Bronze Outcome 1
Question 5: For what values of x is the function $y = x^3 - 3x^2 - 45x - 21$ stationary?	6·4 Silver Outcome 2
My score:	

Exam Questions

Question 1:

(a) Show that (x + 1) is a factor of $x^3 - 13x - 12$.

3

(b) Factorise $x^3 - 13x - 12$ fully.

Question 2:

- (a) Find the equation of the tangent to the curve with equation $y = x^3 + 2x^2 3x + 2$ at the point where x = 1. 5
- (b) Show that this line is also a tangent to the circle with equation $x^2 + y^2 12x 10y + 44 = 0$ and state the coordinates of the point of contact.

Question 3:

An open water tank, in the shape of a triangular prism, has a capacity of 108 litres. The tank is to be lined on the inside in order to make it watertight.

The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length xcm. The tank has a length of lcm.

- (a) Show that the surface area to be lined, $A \text{ cm}^2$, is given by $A(x) = x^2 + \frac{432000}{x}$.
- (b) Find the value of x which minimises this surface area.

64

My score: