
Name:	Date:
Question 1: Solve $x^2 + 5x + 4 \le 0$.	8.3 Silver Outcome 2
Question 2: A curve for which $\frac{dy}{dx} = 12x^2 - 10x$ passes through the point (-1, 2). Express y in terms of x.	9·3 Outcome 1
Question 3: Find the coordinates of the stationary points of the curve with equation $y = 9x^2 - 3x^3$ and determine their nature.	6.5 Bronze Outcome 1 6.5 Silver Outcome 2
Question 4: Find the equation of the tangent at the point $(6, -3)$ on the circle $x^2 + y^2 + 4x + 2y + 3 = 0$.	11.2 Silver Outcome 2
Question 5: The graph of $y = f(x)$ is shown below. $y = f(x) = f(x)$ Sketch the graph of $y = f'(x)$. My score:	6·4 Gold Outcome 3

Exam Questions

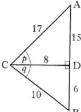
Question 1:

The line with equation y = 2x + 3 is a tangent to the curve with equation $y = x^3 + 3x^2 + 2x + 3$ at A(0, 3), as shown in the diagram.

The line meets the curve again at B.

Show that B is the point (-3, -3) and find the area enclosed by the line and the curve.

Question 2:


Medical researchers studying the growth of a strain of bacteria observe that the number of bacteria, present after t hours, is given by the formula

$$N(t) = 40e^{1.5t}.$$

- (a) State the number of bacteria present at the start of the experiment.
- (b) How many minutes will the bacteria take to double in number?

Question 3:

Triangles ACD and BCD are right-angled at D with angles p and q and lengths as shown in the diagram.

- (a) Show that the exact value of $\sin(p+q)$ is $\frac{84}{85}$.
- (b) Calculate the exact values of:
 - (i) $\cos(p+q)$;
 - (ii) tan(p+q).

3

My score: