Name:	Date:
Question 1: Find the maximum and minimum values for $f(x) = x^3 - 6x^2 - 15x + 4$ in the closed interval $0 \le x \le 12$.	6.6 Outcome 1
Question 2: Given that $x = 3$ and $x = -6$ are roots of $f(x) = x^3 + ax^2 - 21x + b$, find the values of a and b and hence factorise fully.	7·2 Gold Outcome 3
Question 3: A curve for which $f'(x) = 3x^2 + 5x + 6$ passes through the point (0, 0). Find $f(x)$.	9·3 Outcome 1
Question 4: Solve $2\cos 2x^\circ = 3 - 5\sin x^\circ$ for $0 \le x \le 360^\circ$.	. 10·2 Gold Outcome 3
Question 5: A point (x, y) lies on the curve with equation $y = x^2$. Calculate the coordinates for which the gradient of the tangent is 8.	6·3 Gold Outcome 3
My score:	

Exam Questions

Question 1:

Show that the line with equation y = 2x + 1 does not intersect the parabola with equation $y = x^2 + 3x + 4$.

5

Question 2:

The point P(2, 3) lies on the circle $(x+1)^2 + (y-1)^2 = 13$. Find the equation of the tangent at P.

4

Question 3:

Solve the equation

$$\log_4(5-x) - \log_4(3-x) = 2, x < 3.$$

My score: