| Name: | Date: | |---|-----------------------| | Question 1:
Find the maximum and minimum values
for $f(x) = x^3 - 6x^2 - 15x + 4$ in
the closed interval $0 \le x \le 12$. | 6.6 Outcome 1 | | Question 2:
Given that $x = 3$ and $x = -6$ are roots of $f(x) = x^3 + ax^2 - 21x + b$, find the values of a and b and hence factorise fully. | 7·2 Gold Outcome 3 | | Question 3: A curve for which $f'(x) = 3x^2 + 5x + 6$ passes through the point (0, 0). Find $f(x)$. | 9·3 Outcome 1 | | Question 4:
Solve $2\cos 2x^\circ = 3 - 5\sin x^\circ$
for $0 \le x \le 360^\circ$. | . 10·2 Gold Outcome 3 | | Question 5:
A point (x, y) lies on the curve with equation $y = x^2$. Calculate the coordinates for which the gradient of the tangent is 8. | 6·3 Gold Outcome 3 | | My score: | | ## Exam Questions ## Question 1: Show that the line with equation y = 2x + 1 does not intersect the parabola with equation $y = x^2 + 3x + 4$. 5 ## Question 2: The point P(2, 3) lies on the circle $(x+1)^2 + (y-1)^2 = 13$. Find the equation of the tangent at P. 4 ## Question 3: Solve the equation $$\log_4(5-x) - \log_4(3-x) = 2, x < 3.$$ My score: