Name:	Date:
Question 1:	14·1 Gold Outcome 3
Simplify the following logarithmic expression.	
2log ₁₆ 6 - log ₁₆ 9	
Question 2:	9·1 Gold Outcome 3
Calculate the following.	
$\int \frac{x+1}{\sqrt[6]{x}} \ dx$	
Question 3:	11.3 Silver Outcome 2
Show that the line $y - x + 2 = 0$ is a tangent to the circle $x^2 + y^2 - 4x - 8y + 12 = 0$ and find the coordinates of the point of contact.	
Question 1:	9·4 Silver Outcome 2
The curve $y = x^3 - 3x^2 - 30x + 25$ intersects the line $y = 3x - 10$ at points $(-5, -25), (1, -7)$ and $(7, 11)$.	
$y = x^3 - 3x^2 - 30x + 25$ (7, 11) $y = 3x - 10$ Calculate the shaded area.	
Question 5:	8.4 Gold Outcome 3
The equation $x^2 + kx + 2k - 10 = 2x - 3$ has equal roots. Find the values of k.	FEE O 1 SOIG SUITSOINE S
My score:	

Exam Questions 1222

Question 1:

The diagram shows a right-angled triangle with height 1 unit, base 2 units and an angle of a° at A.

- (a) Find the exact values of:
 - (i) sin a °;
 - (ii) sin 2a°.
- (b) By expressing $\sin 3a^{\circ}$ as $\sin (2a + a)^{\circ}$, find the exact value of $\sin 3a^{\circ}$.

Question 2:

Given that

$$f(x) = \sqrt{x} + \frac{2}{x^2}$$
, find $f'(4)$.

Question 3:

(a) $12\cos x^{\circ} - 5\sin x^{\circ}$ can be expressed in the form $k\cos(x+a)^{\circ}$, where k > 0 and $0 \le a < 360$.

Calculate the values of k and a.

- 4
- (b) (i) Hence state the maximum and minimum values of $12 \cos x^{\circ} - 5 \sin x^{\circ}$.
 - (ii) Determine the values of x, in the interval $0 \le x < 360$, at which these maximum and minimum values occur.

My score: