

# Outcome 3 - Dividing complex numbers

### Worked Example:

Express  $\frac{9+7i}{2+3i}$  in the form a+bi,

where a and b are real numbers.

$$\frac{9+7i}{2+3i} \times (2-3i) \times (2-3i)$$

$$=\frac{18-27i+14i+21}{4-6i+6i+9}$$

$$=\frac{39-13i}{13}$$

$$= 3 - i$$

#### Key Facts/Formulae:



i , the imaginary number , is defined as  $i = \sqrt{-1}$ 

A complex number , z, is one that can be written in the form a+bi.

a is the real part b is the imaginary part

#### To add/subtract complex numbers;

- · add/subtract the real parts
- · add/subtract the imaginary parts

#### To multiply complex numbers;

· form and multiply out brackets

Every complex number z = a + bi has a complex conjugate, denoted  $\bar{z}$ , where  $\bar{z} = a - bi$ .

#### To divide complex numbers;

 Multiply top and bottom by the complex conjugate of the denominator

#### Essential knowledge!

 $i^2 = -1 \qquad i^3 = -i$ 



### Questions...

Express the following in the form a + bi, where a and b are real numbers;

- $\frac{3+5i}{3+i}$
- $\frac{42 + 11i}{5 + 2i}$
- $\frac{27 + 14i}{6 i}$
- $4 \qquad \frac{14+23i}{4+3i}$
- $\frac{19 + 8i}{1 + 2i}$



# **Answers**

- 2+i
- 27 + 14i
- 4 + 3i
- 5 + 2i
- 7-6i
- <u>\$</u>
- 9 4i