Key Facts/Formulae:

₩

Outcome 1 - Separable first order differential equations

(a) Find the general solution of the differential equation

$$\frac{dy}{dx} = \frac{x^4}{y}$$

- (b) Hence find the particular solution given that y = 3 and x = 1.
- 1. Separate the 'x's and 'y's

(a)

2. Integrate both sides 3. Sub in the conditions

$$\int y \, dy = \int x^4 \, dx$$

$$\frac{y^2}{2} = \frac{x^5}{5} + c$$

 \times 10) $5v^2 = 2x^5 + c$

$$y \, dy = x^4 \, dx$$
 (b) When $y = 3$ and $x = 1$,

$$45 = 2 + c$$

$$c = 43$$

$$5y^2 = 2x^5 + 43$$

When the constant of integration is calculated by substituting a given set of conditions, the solution is then called a Particular Solution.

The General Solution of a differential

A differential equation is an equation containing one or more derivatives. A first order differential equation

contains a first derivative only.

equation contains a constant of

integration.

A differential equation is separable if it can be rearranged into the form;

$$f(y)dy = g(x)dx$$

Questions...

Find the general and then particular solution to each of these differential equations.

$$\frac{dy}{dx} - 4x = 0 \qquad \text{given that } y = 10 \text{ and } x = 3.$$

$$\frac{dy}{dx} = \frac{4x^3}{3y^2}$$
 given that $y = 1$ and $x = 2$.

$$3y\frac{dy}{dx} - 2x^2 = 0 \qquad \text{given that } y = 3 \text{ and } x = 1.$$

$$x \frac{dy}{dx} = 1 \quad \text{given that } y = 5 \text{ and } x = 1.$$

$$(1+x^2)\frac{dy}{dx} = 1 \qquad \text{given that } y = \pi \text{ and } x = 1.$$

Answers

$$y^3 = x^4 - 15$$

$$3y^2 = 4x^3 - 72$$

$$4 5y^2 = x^{10} + 35$$

$$5 y = \ln x + 5$$