Outcome 2 - Integration by substitution for definite integrals

Worked Example:

Evaluate
$$\int_0^2 \frac{2x}{x^2 + 3} dx$$
 using

the substitution $u = x^2 + 3$.

When
$$x = 2$$
, $u = 4 + 3 = 7$
When $x = 0$, $u = 0 + 3 = 3$

$$\int_{3}^{7} \frac{2x}{u} \frac{du}{2x} = \int_{3}^{7} \frac{1}{u} du = \left[\ln|u| \right]_{3}^{7}$$
$$= (\ln 7) - (\ln 3) = \ln \frac{7}{3}$$

$u = x^2 + 3$

$$\frac{du}{dx} = 2x$$

$$du = 2x dx$$

$$\frac{du}{2x} = dx$$

Advanced Higher Formula sheet

f(x)	$\int f(x)dx$	
$\frac{1}{x}$	$\ln x +c$	

Key Facts/Formulae:

This is the integration equivalent of the Chain Rule.

You will choose a new variable, u, which will usually be a function within a function.

In the exam, this choice will often be made for you.

- 1. Assign your new variable
- 2. Find an expression for 'dx'
- 3. Change limits to be in terms of 'u'
- 4. Make your substitutions and look to simplify
- 5. Integrate and evaluate!

Questions...

Evaluate:

$$\int_0^2 3x^2(x^3-1)^3 \, dx$$

 $\int_{2}^{2} 3x^{2}(x^{3}-1)^{3} dx$ using the substitution $u=x^{3}-1$

using the substitution $u = x^2 + 1$

using the substitution $u = x^2 + 9$

$$4 \qquad \int_1^3 \frac{x+2}{x^2+4x+3} \ dx$$

using the substitution $u = x^2 + 4x + 3$

$$\int_0^{\frac{\pi}{2}} \sin^5 x \cos x \, dx$$

using the substitution $u = \sin x$

using the substitution $u = \cos x$

Answers

$$\frac{1}{3}(2\sqrt{2}-1)$$
 or ≈ 0.609

$$\frac{1}{6}$$

$$\frac{2}{16}$$
 $-\frac{3}{16}$