

Outcome 3 - Integrating inverse trig functions with substitution

Worked Example:

Calculate
$$\int \frac{8}{\sqrt{49 - 4x^2}} \, dx$$

$$= 8 \int \frac{1}{\sqrt{49 - 4x^2}} \ dx$$

$$=8\int \frac{1}{\sqrt{7^2-u^2}} \frac{du}{2}$$

$$=4\int \frac{1}{\sqrt{7^2-u^2}}\ du$$

$$=4\sin^{-1}\left(\frac{u}{7}\right)+c$$

$$=4\sin^{-1}\left(\frac{2x}{7}\right)+c$$

1. Take the constant out

2. Use the formula sheet!

Calculate
$$\int \frac{8}{\sqrt{49-4x^2}} dx$$

$$= 8 \int \frac{1}{\sqrt{49-4x^2}} dx$$

$$= 8 \int \frac{1}{\sqrt{49-4x^2}} dx$$
2. Use the formula sheet!
$$\frac{du}{dx} = 2x$$

$$\frac{du}{dx} = 2$$

$$\frac{du}{dx} = dx$$

- 3. Make your substitution
- 4. Replace u with x term

Advanced Higher Formula sheet	
f(x)	$\int f(x)dx$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right) + c$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + c$

Key Facts/Formulae:

If a function is multiplied by a constant, you can take the constant outside of the integral sign and deal with it at the end.

E.g.
$$\int \frac{1}{3x^2} dx = \frac{1}{3} \int \frac{1}{x^2} dx$$

Questions...

Calculate each of the following integrals.

$$\int \frac{24}{\sqrt{121-16x^2}} dx$$

$$\int \frac{1}{2(36+49x^2)} dx$$

Answers

$$\frac{1}{4} \qquad 7\sin^{-1}\left(\frac{3x}{4}\right) + c$$

$$3\sin^{-1}\left(\frac{2x}{5}\right) + c$$

$$4 \qquad \frac{2}{3} \tan^{-1} \left(\frac{8x}{3} \right) + c$$

$$\frac{3}{2} \tan^{-1} \left(\frac{9x}{2} \right) + c$$