

Outcome 2 - Integrating inverse trig functions with constants

Worked Example:

Calculate
$$\int \frac{6}{\sqrt{81-x^2}} dx$$

1. Take the constant out

$$6\int \frac{1}{\sqrt{81-x^2}} \, dx = 6\sin^{-1}\left(\frac{x}{9}\right) + c$$

2. Use the formula sheet!

$$\frac{1}{\sqrt{(9)^2 - (x)^2}}$$

Advanced Higher Formula sheet	
f(x)	$\int f(x) dx$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right) + c$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + c$

Key Facts/Formulae:

If a function is multiplied by a constant, you can take the constant outside of the integral sign and deal with it at the end.

E.g.
$$\int \frac{1}{3x^2} dx = \frac{1}{3} \int \frac{1}{x^2} dx$$

Questions...

Calculate each of the following integrals.

$$\int \frac{4}{\sqrt{9-x^2}} \, dx$$

$$\int \frac{7}{49+x^2} dx$$

Answers

$$4\sin^{-1}\left(\frac{x}{3}\right) + c$$

$$\stackrel{1}{\stackrel{4}{\rightleftharpoons}} \qquad \frac{1}{3}\sin^{-1}\left(\frac{x}{12}\right) + c$$

$$4 \qquad \frac{3}{4} \tan^{-1} \left(\frac{x}{8} \right) + c$$