

Outcome 1

Implicit differentiation - with one 'y' term

Worked Example:

For $x^3 = x - y^4$, use implicit differentiation to find $\frac{dy}{dx}$.

1. Differentiate each term "as normal"

$$3x^2 = 1 - 4y^3 \frac{dy}{dx}$$

2. Make $\frac{dy}{dx}$ the subject of the formula

$$4y^3 \frac{dy}{dx} = 1 - 3x^2$$

$$\frac{dy}{dx} = \frac{1 - 3x^2}{4y^3}$$

Key Facts/Formulae:

=

For some functions, it may not be possible (or practical) to state them with y as the subject.

To differentiate implicitly;

 $y = x^3$

- 1. Differentiate x terms "as normal".
- 2. Differentiate y terms "as normal" and write $\frac{dy}{dx}$ at the end.
- 3. Make $\frac{dy}{dx}$ the subject of the formula.

Note: Your final answers will involve x and y.

Questions...

Differentiate each of the following with respect to x...

$$2x^2 + x = 3y^5$$

$$3 \qquad x^3 = 6x - y^4$$

$$4x^3 - x^2 = 2y^6$$

$$x^5 + x^3 + y^2 = 0$$

Answers

$$\frac{dy}{dx} = \frac{1 - 2x}{3y^2}$$

$$\frac{dy}{dx} = \frac{4x+1}{15y^4}$$

$$\frac{dy}{dx} = \frac{6 - 3x^2}{4y^3}$$

$$\frac{dy}{dx} = \frac{12x^2 - 2x}{12y^5}$$

$$\frac{dy}{dx} = 3x^2 - 4x^3$$

$$\frac{dy}{dx} = -\frac{5x^4 + 3x^2}{2y}$$