Key Facts/Formulae:

The first derivative

 $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$

Some graphs are drawn with different equations for the x and y coordinates.

These are called parametric equations. The x and y coordinates are connected by an independent variable - often t.

€

Outcome 1

Parametric Differentiation - the 1st derivative

Worked Example:

A curve is given by the parametric equations

$$x = 8t$$
 and $y = 5 - \cos t$.

Find $\frac{dy}{dx}$ in terms of t.

1. Differentiate both equations in terms of t

$$\frac{dx}{dt} = 8 \qquad \frac{dy}{dt} = \sin t$$

2. Find $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{\sin t}{8} = \frac{1}{8}\sin t$$

Questions...

Find $\frac{dy}{dx}$ for the curve defined by each pair of parametric equations;

$$x = t^3 \text{ and } y = -10t$$

$$x = 8t + 3$$
 and $y = 4t^2 - 7$

$$x = 4t$$
 and $y = 2 - \sin t$

$$x = \ln(4t+1)$$
 and $y = t^2 + 5$

$$x = \ln(1+t)$$
 and $y = \ln(1+t^2)$

Answers

$$\frac{dy}{dx} = \frac{2t}{5}$$

$$\frac{dy}{dx} = -\frac{10}{3t^2}$$

$$\frac{dy}{dx} = t$$

$$\frac{dy}{dx} = -\frac{1}{4}\cos t$$

$$\frac{dy}{dx} = 2t^2 + \frac{1}{2}t$$

$$\frac{dy}{dx} = \frac{2t(1+t)}{1+t^2}$$