Key Facts/Formulae:

a function.

The chain rule can be extended to enable us to differentiate a function within a function within

E.g. If y = f(u), where u = g(t), where t = h(x),

Outcome 2 - The Product Rule with bronze/silver Chain Rule

Worked Example:

Differentiate $y = 4x\cos 2x$

1. Define the functions.

Let
$$y = uv$$
 where $u = 4x$ and $v = cos2x$

2. Differentiate both functions.

$$\frac{du}{dx} = 4 \qquad \qquad \frac{dv}{dx} = -2\sin 2x$$

3. Find $\frac{dy}{dx}$.

$$\frac{dy}{dx} = -8x\sin 2x + 4\cos 2x$$

Essential prior knowledge!

$$f(x) = \sin \alpha x \qquad f'(x) = \cos \alpha x$$
$$f(x) = \cos \alpha x \qquad f'(x) = -a \sin \alpha x$$

Questions...

Differentiate each of the following with respect to x.

$$\Rightarrow y = 5x \cos 6x$$

$$\Rightarrow y = x^2 \sin 2x$$

$$y = 3x^4 \cos 8x$$

Answers

$$\frac{dy}{dx} = 12x\cos 4x + 3\sin 4x$$

$$\frac{dy}{dx} = -30x \sin 6x + 5 \cos 6x$$

$$\frac{dy}{dx} = 2x^2 \cos 2x + 2x \sin 2x$$

$$\frac{dy}{dx} = -30x^3 \sin 3x + 30x^2 \cos 3x$$

$$\frac{dy}{dx} = 4x^5\cos 2x + 10x^4\sin 2x$$

$$\frac{dy}{dx} = -24x^4 \sin 8x + 12x^3 \sin 8x$$