

Outcome 4 - The Product Rule with Advanced Higher derivatives

Worked Example:

Differentiate $y = e^{3x} \cos^2 x$

1. Define the functions.

Let
$$y = uv$$
 where $u = e^{3x}$ and $v = cos^2x$

(cosx)²

2. Differentiate both functions.

$$\frac{du}{dx} = e^{3x} \times 3 = 3e^{3x} \qquad \frac{dv}{dx} = 2(\cos x) \times (-\sin x) = -2\sin x \cos x$$

3. Find $\frac{dy}{dx}$.

$$\frac{dy}{dx} = e^{3x} \times -2sinxcosx + cos^{2}x \times 3e^{3x}$$
$$= -2e^{3x}sinxcosx + 3e^{3x}cos^{2}x$$

Questions...

Differentiate each of the following with respect to x.

$$y = 3x^2 \ln x$$

Key Facts/Formulae:

The product rule enables us to differentiate a function consisting of two other functions that are multiplied together.

E.g. If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Essential prior knowledge! f(x) = sinax f'(x) = acosax $f(x) = \cos ax$ $f'(x) = -a\sin ax$

Advanced Higher Formula sheet		
f(x)	f'(x)	
tan x	sec ² x	
$\cot x$	-cosec ² x	
sec x	sec x tan x	
cosec x	-cosec x cot x	
$\ln x$	$\frac{1}{x}$	
e^x	e ^x	

Formulae N		
f(x)	f'(x)	
$\ln f(x)$	$\frac{f'(x)}{f(x)}$	
$e^{f(x)}$	$f'(x)e^{f(x)}$	

Answers

$$\frac{dy}{dx} = x^2 e^x + 2x e^x$$

$$\frac{dy}{dx} = e^x \cos x + e^x \sin x$$

$$\frac{dy}{dx} = -4e^{2x}\sin x \cos^3 x + 2e^{2x}\cos^4 x$$

$$\frac{dy}{dx} = 3x + 6x \ln x$$

$$\frac{dy}{dx} = \sin 2x \ln(5x+2) + \frac{5\sin^2 x}{5x+2}$$