

Higher Mathematics 2017 Paper 1

Time allowed = 1 hr 10 mins

Marks available = 60

For each question, you can click below to view the worked solutions for each question. You can also view this paper's marking scheme below;

https://www.sqa.org.uk/pastpapers/papers/instructions/2017/mi_NH_Mathematics_all_2017.pdf

Remember to record your percentage for this paper in your analysis grid (your score ÷ 60 × 100).

FORMULAE LIST

Circle

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a,b) and radius r.

Scalar product

 $\mathbf{a}.\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

or
$$\mathbf{a.b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2 \cos^2 A - 1$$

$$= 1 - 2 \sin^2 A$$

Table of standard derivatives

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

Attempt ALL questions

Total marks — 60

- 1. Functions f and g are defined on suitable domains by f(x) = 5x and $g(x) = 2\cos x$.
 - (a) Evaluate f(g(0)).

1

(b) Find an expression for g(f(x)).

2

Click here to view the worked solutions.

Video Lesson: 3.2 Silver Outcome 2

2. The point P (-2, 1) lies on the circle $x^2 + y^2 - 8x - 6y - 15 = 0$. Find the equation of the tangent to the circle at P.

Click here to view the worked solutions.

Video Lesson: 11.2 Silver Outcome 2

3. Given $y = (4x-1)^{12}$, find $\frac{dy}{dx}$.

2

Click here to view the worked solutions.

Video Lesson: 13.1 Bronze Outcome 1

4. Find the value of k for which the equation $x^2 + 4x + (k-5) = 0$ has equal roots.

3

Click here to view the worked solutions.

Video Lesson: 8.4 Gold Outcome 3

- 5. Vectors \mathbf{u} and \mathbf{v} are $\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix}$ respectively.
 - (a) Evaluate u.v.

(b)

Vector \mathbf{w} makes an angle of $\frac{\pi}{3}$ with \mathbf{u} and $|\mathbf{w}| = \sqrt{3}$. Calculate \mathbf{u} . \mathbf{w} .

3

Click here to view the worked solutions.

Video Lesson: 12.4 Outcome 1

6. A function, h, is defined by $h(x) = x^3 + 7$, where $x \in \mathbb{R}$. Determine an expression for $h^{-1}(x)$.

3

Click here to view the worked solutions.

Video Lesson: 3.3 Outcome 1

7. A(-3,5), B(7,9) and C(2,11) are the vertices of a triangle. Find the equation of the median through C.

3

Click here to view the worked solutions.

Video Lesson: 1.8 Bronze Outcome 1

8. Calculate the rate of change of $d(t) = \frac{1}{2t}$, $t \neq 0$, when t = 5.

3

Click here to view the worked solutions.

Video Lesson: 6.2 Silver Outcome 2

9. A sequence is generated by the recurrence relation $u_{n+1} = m u_n + 6$ where m is a constant.

(i) Explain why this sequence approaches a limit as $n \to \infty$.

(a) Given $u_1 = 28$ and $u_2 = 13$, find the value of m.

2

(ii) Calculate this limit.

2

Click here to view the worked solutions.

(b)

Video Lesson: 2.2 Silver Outcome 2

5

10. Two curves with equations $y = x^3 - 4x^2 + 3x + 1$ and $y = x^2 - 3x + 1$ intersect as shown in the diagram.

(a) Calculate the shaded area.

The line passing through the points of intersection of the curves has equation y = 1 - x.

(b) Determine the fraction of the shaded area which lies below the line y = 1 - x.

Click here to view the worked solutions.

Video Lesson: 9.4 Gold Outcome 3

11. A and B are the points (-7, 2) and (5, a).

AB is parallel to the line with equation 3y - 2x = 4.

3

Click here to view the worked solutions.

Determine the value of a.

Video Lessons: 1·1 Gold Outcome 3, 1·6 Bronze Outcome 1

12. Given that $\log_a 36 - \log_a 4 = \frac{1}{2}$, find the value of a.

3

Click here to view the worked solutions.

Video Lessons: 14.2 Silver Outcome 2

13. Find
$$\int \frac{1}{(5-4x)^{\frac{1}{2}}} dx$$
, $x < \frac{5}{4}$.

4

Click here to view the worked solutions.

Video Lesson: 13.2 Silver Outcome 2

14. (a) Express $\sqrt{3} \sin x^{\circ} - \cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$, where k > 0 and 0 < a < 360.

4

(b) Hence, or otherwise, sketch the graph with equation $y = \sqrt{3} \sin x^{\circ} - \cos x^{\circ}$, $0 \le x \le 360$.

3

Use the diagram provided in the answer booklet.

Click here to view the worked solutions.

Video Lessons: 15·1 Bronze Outcome 1, 15·2 Gold Outcome 3

2

1

1

15. A quadratic function, f, is defined on \mathbb{R} , the set of real numbers.

Diagram 1 shows part of the graph with equation y = f(x).

The turning point is (2, 3).

Diagram 2 shows part of the graph with equation y = h(x).

The turning point is (7, 6).

Diagram 1

Diagram 2

(a) Given that h(x) = f(x+a) + b.

Write down the values of a and b.

(b) It is known that $\int_{1}^{3} f(x) dx = 4$.

Determine the value of $\int_6^8 h(x) dx$.

(c) Given f'(1) = 6, state the value of h'(8).

Click here to view the worked solutions.

[END OF QUESTION PAPER]