

Higher Mathematics 2017 Paper 2

Time allowed = 1 hr 30 mins

Marks available = 70

For each question, you can click below to view the worked solutions for each question. You can also view this paper's marking scheme below;

https://www.sqa.org.uk/pastpapers/papers/instructions/2017/mi_NH_Mathematics_all_2017.pdf

Remember to record your percentage for this paper in your analysis grid (your score ÷ 70 × 100).

FORMULAE LIST

Circle

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a,b) and radius r.

Scalar product

 $\mathbf{a}.\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

or
$$\mathbf{a.b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2 \cos^2 A - 1$$

$$= 1 - 2 \sin^2 A$$

Table of standard derivatives

f(x)	f'(x)
sin ax	a cos ax
cos ax	$-a\sin ax$

Table of standard integrals

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

Attempt ALL questions Total marks — 70

1. Triangle ABC is shown in the diagram below.

The coordinates of B are (3,0) and the coordinates of C are (9,-2).

The broken line is the perpendicular bisector of BC.

(a) Find the equation of the perpendicular bisector of BC.

2

4

- (b) The line AB makes an angle of 45° with the positive direction of the x-axis. Find the equation of AB.
- (c) Find the coordinates of the point of intersection of AB and the perpendicular bisector of BC.

2

Click here to view the video solutions.

Video Lessons: 1.8 Gold Outcome 3, 1.3 Bronze Outcome 1, 1.9 Silver Outcome 2

2. (a) Show that (x-1) is a factor of $f(x) = 2x^3 - 5x^2 + x + 2$.

2

(b) Hence, or otherwise, solve f(x) = 0.

3

Click here to view the video solutions.

Video Lesson: 7.1 Bronze Outcome 1

3. The line y = 3x intersects the circle with equation $(x-2)^2 + (y-1)^2 = 25$.

Find the coordinates of the points of intersection.

5

Click here to view the video solutions.

Video Lesson: 11.3 Bronze Outcome 1

4. (a) Express $3x^2 + 24x + 50$ in the form $a(x+b)^2 + c$.

3

(b) Given that $f(x) = x^3 + 12x^2 + 50x - 11$, find f'(x).

2

(c) Hence, or otherwise, explain why the curve with equation $y=f\left(x\right)$ is strictly increasing for all values of x.

2

Click here to view the video solutions.

Video Lesson: 8.2 Bronze Outcome 1

5. In the diagram, $\overrightarrow{PR} = 9i + 5j + 2k$ and $\overrightarrow{RQ} = -12i - 9j + 3k$.

2

(a) Express \overrightarrow{PQ} in terms of i, j and k.

The point S divides QR in the ratio 1:2.

(b) Show that $\overrightarrow{PS} = i - j + 4k$.

2

(c) Hence, find the size of angle QPS.

5

Click here to view the video solutions.

Video Lesson: 12.4 Outcome 1

6. Solve $5\sin x - 4 = 2\cos 2x$ for $0 \le x < 2\pi$.

5

Click here to view the video solutions.

Video Lessons: 10.2 Gold Outcome 3

7. (a) Find the *x*-coordinate of the stationary point on the curve with equation $y = 6x - 2\sqrt{x^3}$.

- 4
- (b) Hence, determine the greatest and least values of y in the interval $1 \le x \le 9$.

3

Click here to view the video solutions.

Video Lesson: 6.6 Outcome 1

- 8. Sequences may be generated by recurrence relations of the form $u_{n+1}=k\,u_n-20,\,u_0=5$ where $k\in\mathbb{R}$.
 - (a) Show that $u_2 = 5k^2 20k 20$.

2

(b) Determine the range of values of k for which $u_2 < u_0$.

1

Click here to view the video solutions.

Video Lessons: 2·1 Silver Outcome 2, 8·3 Silver Outcome 2

9. Two variables, x and y, are connected by the equation $y = kx^n$. The graph of $\log_2 y$ against $\log_2 x$ is a straight line as shown.

Find the values of k and n.

5

Click here to view the video solutions.

Video Lesson: 14.4 Gold Outcome 3

10. (a) Show that the points A(-7, -2), B(2, 1) and C(17, 6) are collinear.

3

Three circles with centres A, B and C are drawn inside a circle with centre D as shown.

The circles with centres A, B and C have radii $r_{\rm A},\,r_{\rm B}$ and $r_{\rm C}$ respectively.

- $r_{\rm A} = \sqrt{10}$
- $r_{\rm B} = 2r_{\rm A}$
- $r_{\rm C} = r_{\rm A} + r_{\rm B}$
- (b) Determine the equation of the circle with centre D.

4

Click here to view the video solutions.

Video Lesson: 1.7 Outcome 1

11. (a) Show that
$$\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x = \sin^3 x$$
, where $0 < x < \frac{\pi}{2}$.

3

(b) Hence, differentiate $\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$, where $0 < x < \frac{\pi}{2}$.

3

Click here to view the video solutions.

Video Lessons: 10.3 Gold Outcome 3, 13.1 Gold Outcome 3

[END OF QUESTION PAPER]