

Rig@ur Maths

For access to our online learning platform simply scan the QR code or click here.

Unit 4 Unit 4 Unit 2

Emergency Exam Etrategies

The following booklet will show you the key steps how to answer the "standard" questions in the Higher Maths course. It is by no means a list of EVERYTHING but it aims to provide you with a solid foundation to go on and achieve a good pass.

© cdmasterworks ltd

Only underlined skills have key steps so far

How do you show that the 2D points A, B and C are collinear?

- Calculate mar
- Calculate m_{BC}
- Write statement

Now try it yourself!

Prove that the points A(-2, -8), B(0, -4) and C(7, 10) are collinear.

Click here to reveal answer!

How do you show that the 2D points A, B and C are collinear?

- Calculate mar
- Calculate m_{RC}
- Write statement

Now try it yourself!

Prove that the points A(-2, -8), B(0, -4) and C(7, 10) are collinear.

Answer: Since m_{AB} = m_{BC} (m = 2) and B is a common point, A, B and C are collinear.

© cdmasterworks Itd

© cdmasterworks ltd

Straight Line

Ley Steps and Exam Strategies

How do you calculate the limit of a recurrence relation?

$$L = \frac{b}{1 - a}$$

Click here to reveal answer!

Now try it yourself!

A sequence is defined by the recurrence relation

 $u_{n+1} = \frac{3}{8}u_n + 10$, $u_0 = 5$

Calculate the limit where $n \rightarrow \infty$.

© cdmasterworks Itd

Recurrence Relations

How do you calculate the limit of a recurrence relation? Now try it yourself!

$$L = \frac{D}{1 - a}$$

Higher Maths

A sequence is defined by the recurrence relation

 $u_{n+1} = \frac{3}{8}u_n + 10$, $u_0 = 5$

Calculate the limit where $n \rightarrow \infty$.

Answer: Limit = 16

© cdmasterworks Itd

Recurrence Relations

How do you find the points of intersection between a curve and a straight line?

- Set them equal
- Set equal to zero
- Factorise

Now try it yourself!

Find the coordinates

of the points of intersection of the curve $y = x^2 - 2x - 17$ and the line y = 3x + 7.

to reveal answer!

Quadratics

Factorise

Answer: (-3, -2) and (8, 31)

© cdmasterworks Itd

Click here

to reveal answer!

 $y = 2x^2 - 25$

2 Set = 0

© cdmasterworks ltd

Integration

Factorise

2 curves when you are not given

the limits of integration?

1 Set them equal

How do you calculate the area between

Ley Steps and Exam Strategies

Calculate the shaded area.

Now try it yourself!

The curve

 $y = 2x^2 - 25$

intersects the

curve $y = x^2$ at

points P and Q.

 $Area = \int_{\alpha}^{\nu} top - bottom \, dx$

2 curves when you are not given

 $Area = \int_{a}^{b} top - bottom \, dx$

the limits of integration?

1 Set them equal

∠igher Maths

2 Set = 0

© cdmasterworks ltd

Integration

Factorise

Now try it yourself!

The curve

 $y = 2x^2 - 25$

intersects the

curve $y = x^2$ at

points P and Q.

Calculate the shaded area.

 $y = 2x^2 - 25$

Answer: $\frac{500}{3}$ units²

How do you calculate the area between

Ley Steps and Exam Strategies

If sina is an acute angle how to you find the exact value of sin2a?

- 1 Formula sheet
- 2 Draw a triangle and calculate missing side

3 Sub into formula

If A is an acute angle with $\sin A = \frac{3}{4}$ find the exact value of $\sin 2A$.

© cdmasterworks ltd

If cosa is an acute angle how to you find the exact value of cos2a?

- Formula sheet (use middle one!)
- Square it, double it, take away 1

Now try it yourself!

If A is an acute angle with $\cos A = \frac{3}{7}$ find the exact value of cos2A.

Click here

Trigonometry

Click here to reveal answer!

Now try it yourself!

Solve $4\sin(3x - 30)^{\circ} - 2 = 0$ for $0 \le x \le 270^\circ$.

© cdmasterworks Itd

Factorise

Solve 2 equations

© cdmasterworks Itd

for $0 \le x \le 2\pi$.

Answer: $x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$

How do you show that the 3D points A, B and C are collinear?

- Find \overline{AB}
- Find \overrightarrow{BC}
- Write statement with ratio

Now try it yourself!

Show that A(-1, 0, 1), B(2, 6, 7) and C(6, 14, 15)are collinear and find the ratio in which B divides AC.

Click here to reveal answer!

How do you show that the 3D points A, B and C are collinear?

- \clubsuit Find \overrightarrow{AB}
- $\mathbf{\mathcal{A}}$ Find \overrightarrow{BC}
- Write statement with ratio

Now try it yourself!

Show that A(-1, 0, 1), B(2, 6, 7) and C(6, 14, 15) are collinear and find the ratio in which B divides AC.

Answer: Since \overrightarrow{AB} : \overrightarrow{BC} = 3 : 4 and B is a common point, points are collinear.

© cdmasterworks ltd

Vectors

