# Outcome 4 - Calculating Magnitude

#### Bronze example

Silver example

Gold example

Examples... \*\*|a| means the magnitude of a.\*\*

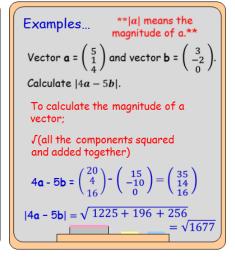
Vector  $\mathbf{a} = {5 \choose 3}$  and vector  $\mathbf{b} = {4 \choose -7}$ .

Calculate |a+b|.

To calculate the magnitude of a vector;  $\mathbf{J}$ (all the components squared and added together)  $\mathbf{a} + \mathbf{b} = {5 \choose 3} + {4 \choose -7} = {9 \choose -4}$   $|a+b| = \sqrt{81+16} = \sqrt{97}$ 

Examples... \*\*|a| means the magnitude of a.\*\*

Vector 
$$\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}$$
 and vector  $\mathbf{b} = \begin{pmatrix} 7 \\ -4 \\ 1 \end{pmatrix}$ .


Calculate  $|a+b|$ .

To calculate the magnitude of a vector;

$$J(\text{all the components squared and added together})}$$

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ -4 \\ 6 \end{pmatrix}$$

$$|a+b| = \sqrt{81+16+36} = \sqrt{133}$$



### **Bronze Questions**

Calculate the magnitude for the following vectors...

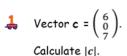
- $\text{Vector } \mathbf{h} = \begin{pmatrix} 8 \\ -3 \end{pmatrix}.$ Calculate  $|\mathbf{h}|$ .
- Vector  $\mathbf{m} = \begin{pmatrix} 3 \\ 9 \end{pmatrix}$  and vector  $\mathbf{n} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ .

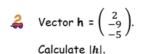
  Calculate  $|\mathbf{m} + \mathbf{n}|$ .
- Vector  $\mathbf{r} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$  and vector  $\mathbf{s} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ .

  Calculate |r s|.

## Gold Questions

Calculate the magnitude for the following vectors...


- Vector  $\mathbf{c} = \begin{pmatrix} 3 \\ 0 \\ 7 \end{pmatrix}$ .


  Calculate |3c|.
- $\text{Vector } \mathbf{h} = \begin{pmatrix} 4 \\ -1 \\ -5 \end{pmatrix}.$  Calculate |5h|.
- Vector  $\mathbf{m} = \begin{pmatrix} 2 \\ 0 \\ -6 \end{pmatrix}$  and vector  $\mathbf{n} = \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}$ .

  Calculate |3m + 4n|.

## Silver Questions







- Vector  $\mathbf{m} = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix}$  and vector  $\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ .

  Calculate  $|\mathbf{m} + \mathbf{n}|$ .
- Vector  $\mathbf{r} = \begin{pmatrix} 8 \\ -5 \\ 0 \end{pmatrix}$  and vector  $\mathbf{s} = \begin{pmatrix} -1 \\ -2 \\ 6 \end{pmatrix}$ .

  Calculate  $|\mathbf{r} \mathbf{s}|$ .

Bronze Answers

- **1**. 10
- **2**. √73
- 3.  $\sqrt{125} = 5\sqrt{5}$  4.  $\sqrt{106}$

Silver Answers

- 1.  $\sqrt{85}$  2.  $\sqrt{110}$
- 3.  $\sqrt{33}$  4.  $\sqrt{126} = 3\sqrt{14}$

Gold Answers

- 1.  $\sqrt{58}$  2.  $\sqrt{1050} = 5\sqrt{42}$
- 3.  $\sqrt{536} = 2\sqrt{134}$  4.  $\sqrt{884} = 2\sqrt{221}$