| No. | Topic | Skills | Explanation | Prior learning | | |---|-----------------------|--|---|---|--| | 01 | Brackets | Working with algebraic expressions involving the expansion of brackets | • $a(bx \pm c) + d(ex \pm f)$
• $ax(bx \pm c)$
• $(ax \pm b)(cx^2 + dx + e)$
• $(ax \pm b)^2$
• $(ax \pm b)^3$ | Multiplying out
single brackets
MTH 414a | | | 02 | Factorising | Factorising an algebraic expression | Common factor Difference of 2 squares p²x² - a² Trinomials with unitary and non-unitary x² coefficient Combinations of the above | Factorising
with a
numerical
common factor
MTH 414b | | | 03 | Completing the square | Completing the square in a quadratic expression with unitary x^2 coefficient | • Writing quadratics of
the form $x^2 + bx + c$ in
the form $(x + p)^2 + q$ | N/A | | | Possible assessment tasks: • SQA Expressions & Formulae Assessment Standard 1.2 • Rigour Maths E+F 1.2a, 1.2b, 1.2c | | | | | | | 04 | Percentages | Working with reverse percentages | Use reverse percentages
to calculate an original
quantity | % increase,
decrease
MNU 407a | |----|-------------|----------------------------------|---|---| | | | Working with appreciation | Appreciation including compound interestDepreciation | | | 05 | Fractions | Working with fractions | Operations and
combinations of
operations on fractions
including mixed numbers
(+, -, x, ÷) | +, -, × fractions, changing between mixed numbers and improper fractions MTH 407b | # Possible assessment tasks: - SQA Applications Assessment Standard 1.3 - Rigour Maths App 1.3a, 1.3b | 06 | Equations &
Inequalities | Working with linear
equations and inequalities | Equations/inequalities with brackets Equations/inequalities with fractions Inequalities where sign changes direction | x + a = b $ax = b$ $ax + b = c$ $ax + b = cx + d$ $ax + b > c$ (or equiv forms) MTH 415a | |----|-----------------------------------|---|--|--| | 07 | Simultaneous equations | Working with simultaneous equations | Construct from textGraphical solutionAlgebraic solution | N/A | | 08 | Changing the subject of a formula | Changing the subject of a formula | Linear formulaFormula involving a simple
square or square root | Basic 1/2 step
changing the
subject | | | | | | N/A | |------|--------------------------------------|---|--|---| | Poss | ible assessment to
• Rigour Maths | nsks:
Rel 1.1c, 1.1d, 1.1e | | | | 09 | Rounding | Rounding to a given
number of significant
figures | | Rounding to
nearest
10/100/1000, 1
figure of
accuracy, 1/2/3
decimal places
MNU 301a | | 10 | Arcs and sectors | Circle geometry | Calculating the length of an arc Calculating the area of a sector Calculating the radius/diameter/angle when given the arc/sector area Solving problems in context Non-calculator questions | Perimeter,
circumference
and area of
circle,
composite
areas
MNU 311a
MTH 311b
MTH 416b | | 11 | Volumes of solids | Calculating the volume of a standard solid | Sphere, cone pyramid Calculating the radius/height when given the volume Problems in context Composite volumes Non-calculator questions | Cuboid, cube,
prisms
including
cylinder,
composite
areas
MNU 311a
MTH 411c
MTH 416b | | Poss | • | nsks:
ions & Formulae Assessment
E+F 1.4a, 1.4b, 1.4c | Standard 1.4 | | | 13 | Surds | Working with surds | Simplifying surdsRationalising the denominator | Powers and
roots
MTH 306a | | 14 | Indices | Simplifying expressions using the laws of indices | × and ÷ using + and - indices including fractions (ab)^m = a^mb^m a^{m/n} = ⁿ√a^m Calculations using scientific notation | Writing
numbers in
scientific
notation
MTH 406b | | 15 | Algebraic
Fractions | Reducing an algebraic
fraction to its simplest
form | • $\frac{a}{b}$ where a, b are of the form $(mx + p)^n$ | Simplifying,
equivalent
numerical
fractions
MTH 207c | | | | Applying the four operations to algebraic fractions | • +, - x, ÷ | +,-×,÷
numerical
fractions | MTH 407b Possible assessment tasks: SQA Expressions & Formulae Assessment Standard 1.1 SQA Expressions & Formulae Assessment Standard 1.3 Rigour Maths E+F 1.1a, 1.1b, 1.3 16 Straight Line Determining the gradient Using: m = vert/hor, $m = \frac{y_2 - y_1}{2}$ of a straight line given drawing a $x_2 - x_1$ two points straight line Determining the equation Use the formula y - b =from a table of values, of a straight line m(x-a) to find the recognising the equation of a straight equation of a line, given two points or one point and the straight line in the form y = c, gradient Identify gradient and yx = a, y = mx +intercept from various MTH 413b forms of the equation of MTH 413c a straight line MTH 413d Identifying the gradient ax + by + c = 0, etc and y-intercept from various forms of the equation of a straight line 17 **Functions** Use functional notation Evaluate f(a)Substitution, f(x)Solve f(a) = bsolving 2-step Link to graphical notation equations MTH 314a MTH 315a 18 Statistics Compare data sets using Comparing data sets Mean, median, using statistics calculated/determined: mode and range Semi-interquartile range MTH 420b Standard deviation Forming a linear model Determine the equation Plotting, from a given set of data of a best fitting-straight reading coordinates, line on a scatter graph y - band use it to estimate y = m(x - a)given x. , substitution MTH 318a MTH 314a Possible assessment tasks: SQA Relationships Assessment Standard 1.1 SQA Applications Assessment Standard 1.4 Rigour Maths REL 1.1a, 1.1b, APP 1.4 18 Pythagoras Applying Pythagoras' Converse Using Pythagoras to Three dimensions Theorem In circles with segments calculate length removed in a right Distance between two angled or isosceles points triangle | | | | | MTH 416a | | |---|-------------------|--|---|---|--| | 19 | Angles in circles | Applying the properties of shapes to determine an angle involving at least two steps | Quadrilaterals/triangles /polygons/circles Relationship in a circle between the centre, chord and perpendicular bisector | Complementary, supplementary angles, angles in fully/half turns, angles in a triangle, corresponding, alternate angles MTH 317a | | | 20 | Similar shapes | Using similarity | LengthAreaVolume | Enlargement,
reduction
MTH 317c | | | Possible assessment tasks: • SQA Relationships Assessment Standard 1.4 | | | | | | • Rigour Maths REL 1.4a, 1.4b, 1.4c | 21 | Quadratic
equations | Solving a quadratic equation Solving a quadratic equation using the | Solving from factorised form Solving having factorised first Graphical treatment Using x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} | N/A | |----|-------------------------------------|--|--|-----| | | | quadratic formula Using the discriminant to determine the nature of the roots | Know and use the discriminant Determine the number and describe the nature of the roots using appropriate language | | | 22 | Graphs of
quadratic
functions | Recognise and determine
the equation of a
quadratic function from
its graph | • Equations of the form $y = kx^2$ and $y = k(x + p)^2 + q$ | N/A | | | | Sketching a quadratic function | • Equations of the form $y = (ax - m)(bx - n)$ • Equations of the form $y = k(x + p)^2 + q$ | | | | | Identifying features of a quadratic function | Identify: • The nature and coordinates of the turning point • The equation of the axis of symmetry of a quadratic of the form $y = k(x+p)^2 + q$ | | # Possible assessment tasks: - SQA Relationships Assessment Standard 1.2, 1.3 - Rigour Maths REL 1.2, 1.3a, 1.3b | 23 Trigor
graph:
equati
identi | of trigonom functions | th the graphs etric • | Basic graphs
Amplitude
Vertical translation
Multiple angle
Phase angle | N/A | |---|---|------------------------|---|-----| | | Working with trigonometric relationship | | Sine, cosine and tangents of angles from 0° to 360° Period Related angles Solve basic equations Use the identities $cos^2x + sin^2x = 1$ and $tanx = \frac{sinx}{cosx}$ | | ## Possible assessment tasks: - SQA Relationships Assessment Standard 1.5 - Rigour Maths REL 1.5a, 1.5b | - 1 | | | | | | | |-----|----|---------------------------|---|---|---|--| | | 24 | Trigonometry in triangles | Calculating the area of a triangle using trigonometry | • | $Area = \frac{1}{2}absinC$ | A= ½ × b × h
MNU 311a | | | | | Using the sine and cosine rules to find a side or angle in a triangle | | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc\cos A$ $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ | Right-angled
trigonometry
MTH 416a | | | | | Use bearings with trigonometry | • | To find a distance or direction | 3-figure
bearings | ## Possible assessment tasks: - SQA Applications Assessment Standard 1.1 - Rigour Maths APP 1.1 | 25 | Vectors | Working with 2D vectors | +, - 2D vectors using
directed line segments | Plotting,
reading | |----|---------|---------------------------------------|--|--| | | | Working with 3D coordinates | Determine coordinates
of a point from a diagram
representing a 3D object | coordinates,
Pythagoras
MTH 318a | | | | Using vector components | +, - 2D or 3D vectors
using components | MTH 416a | | | | Calculating the magnitude of a vector | Magnitude of a 2D or 3D vector | | ## Possible assessment tasks: - SQA Applications Assessment Standard 1.2 - Rigour Maths APP 1.2