RIGOOUR Image: State of the state of					1 A line has a midpoint of (-2, 5). One of the end points on the line is (8, 11). What are the coordinates of the other end point?
2 Two functions are defined as f(x) = x ² + 1 and g(x) = 2x - 3. Calculate f(g(x)).	3 Change 225° into radians.	4 Are the points K(3, 9), L(6, 24) and M(12, 48) collinear?	5 Factorise the following polynomial $g(x) = x^3 - 39x + 70$	 Triangle ABC has vertices A(-4, 1), B(3, 3) and C(8, 7). Calculate the equation of the perpendicular bisector AC. 	7 Solve tan²x - 3 = 0 0 <u><</u> x <u><</u> 2π
8 Calculate the coordinates of the stationary points on the curve $y = 6x^2 - 2x^3$ & determine nature.	9 A curve for which $\frac{dy}{dx} = 6x^2 - 2x$ passes through (-1, 3). Express y in terms of x.	10 Calculate the size of the angles between the vectors $\underline{c} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix} \& \underline{d} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}.$	$\frac{11}{\int (4x+9)^2 dx}$	12 A sequence is defined by the recurrence relation $u_{n+1} = au_n + b$, $u_0 = 6$ If $u_1 = 12$ and $u_2 = 15$, calculate a and b.	13 What are the values of a, $y = a \sin bx^{\circ} + c$ b 12^{-} -2^{-} $\frac{2\pi}{3}$
14 Find the centre and radius for the circle $x^{2} + y^{2} - 6x - 40 = 0.$	For the equation y = ax(x + b), what are the values of a and b?	16 A function is $k(x) = \frac{x+1}{4}$. Find the inverse function k ⁻¹ (x).	17 If A and B are acute angles with $sinA = \frac{1}{2}$ and $cosB = \frac{3}{4}$ find the exact value of $sin(A + B)$.	18 $A(x) = \frac{6}{\sqrt{x}}$ Calculate A'(4)	$\frac{19}{\text{Show that}}$ $\frac{\sin 2x}{\tan x} = 2\cos^2 x$
20 Solve 2cos2x = sinx - 1 for 0 <u>< x <</u> 360	21 A sequence is defined by the recurrence relation $u_{n+1} = au_n + 12$, $u_0 = 2$ and has a limit of 16. Calculate the value of a.	22 Circle 1 has equation $(x + 2)^2 + (y + 5)^2 = 36$ and circle 2 has equation $x^2 + y^2 - 8x - 6y + 9 = 0$. Show that these circles intersect at one point.	23 For what values of x is the function $y = \frac{1}{3}x^3 - 2x^2 - 12x$ decreasing?	24 Write $y = 4x^2 - 8x + 9$ in the form $y = a(x + b)^2 + c$.	25 The curve $y = x^3 + 3x^2 - 4x - 5$ intersects the line y = 2x + 3 at points (-4, -5), (-1, 1) and (2, 7). Calculate the shaded area.
26 The curve $y = x^3 - 5x^2 + 3x + 10$ intersects the line y = x + 2 at 3 points. Calculate the points of intersection.	27 Express $\sqrt{3}sinx^\circ + cosx^\circ$ in the form $kcos(x + a)^\circ$ where $k > 0$ and 0 < a < 360.	28 A point (x, y) lies on the curve with equation $y = x^2 - 8x$. Calculate the coords for which the gradient of the tangent is 6.	Pind the range of values of c such that the equation $x^{2} + cx + 2c = 2x + 4$ has real roots.		following equation $\log_7(x+5) = 1$