X056/301

NATIONAL QUALIFICATIONS 2000 THURSDAY, 25 MAY 9.00 AM - 10.10 AM

MATHEMATICS
HIGHER
Paper 1
(Non-calculator)
Units 1,2 and 3

Read Carefully

- 1 Calculators may NOT be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

 $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$

 $\sin 2A = 2\sin A \cos A$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

Table of standard derivatives and integrals:

f(x)	f'(x)
sin ax	acos ax
cosax	$-a\sin ax$

	f(x)	$\int f(x) \ dx$
-	sin ax	$-\frac{1}{a}\cos ax + C$
	cosax	$\frac{1}{a}\sin ax + C$

Marks

4

1. On the coordinate diagram shown, A is the point (6, 8) and B is the point (12, -5). Angle AOC = p and angle COB = q.

Find the exact value of sin(p + q).

2. A sketch of the graph of y = f(x) where $f(x) = x^3 - 6x^2 + 9x$ is shown below. The graph has a maximum at A and a minimum at B(3, 0).

(a) Find the coordinates of the turning point at A.

4

(b) Hence sketch the graph of y = g(x) where g(x) = f(x + 2) + 4. Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.

2

(c) Write down the range of values of k for which g(x) = k has 3 real roots.

1

[Turn over

Marks

4

1

3. Find the size of the angle a° that the line joining the points A(0, -1) and $B(3\sqrt{3}, 2)$ makes with the positive direction of the x-axis.

4. The diagram shows a sketch of the graphs of $y = 5x^2 - 15x - 8$ and $y = x^3 - 12x + 1$. The two curves intersect at A and touch at B, ie at B the curves have a common tangent.

- (a) (i) Find the x-coordinates of the points on the curves where the gradients are equal.
 - (ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
- (b) The point A is (-1, 12) and B is (3, -8).

 Find the area enclosed between the two curves.

 5

Marks

5. Two sequences are generated by the recurrence relations $u_{n+1} = au_n + 10$ and $v_{n+1} = a^2v_n + 16$.

The two sequences approach the same limit as $n \to \infty$.

Determine the value of a and evaluate the limit.

5

5

- 6. For what range of values of k does the equation $x^2 + y^2 + 4kx 2ky k 2 = 0$ represent a circle?
- 7. VABCD is a pyramid with a rectangular base ABCD.

Relative to some appropriate axes,

$$\overrightarrow{VA}$$
 represents $-7i - 13j - 11k$

$$\overrightarrow{AB}$$
 represents $6i + 6j - 6k$

$$\overrightarrow{AD}$$
 represents $8i - 4j + 4k$.

K divides BC in the ratio 1:3.

 \overrightarrow{FindVK} in component form.

3

8. The graph of y = f(x) passes through the point $(\frac{\pi}{9}, 1)$. If $f'(x) = \sin(3x)$ express y in terms of x.

4

9. Evaluate $\log_5 2 + \log_5 50 - \log_5 4$.

3

10. Find the maximum value of $\cos x - \sin x$ and the value of x for which it occurs in the interval $0 \le x \le 2\pi$.

6