X100/301

NATIONAL QUALIFICATIONS 2004 FRIDAY, 21 MAY 9.00 AM - 10.10 AM MATHEMATICS HIGHER Units 1, 2 and 3 Paper 1 (Non-calculator)

Read Carefully

- 1 Calculators may NOT be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

ALL questions should be attempted.

Marks

1. The point A has coordinates (7, 4). The straight lines with equations x + 3y + 1 = 0 and 2x + 5y = 0 intersect at B.

(a) Find the gradient of AB.

3

(b) Hence show that AB is perpendicular to only one of these two lines.

5

- 2. $f(x) = x^3 x^2 5x 3$.
 - (a) (i) Show that (x + 1) is a factor of f(x).
 - (ii) Hence or otherwise factorise f(x) fully.

5

(b) One of the turning points of the graph of y = f(x) lies on the x-axis. Write down the coordinates of this turning point.

1

3. Find all the values of x in the interval $0 \le x \le 2\pi$ for which $\tan^2(x) = 3$.

4

2

2

- **4.** The diagram shows the graph of y = g(x).
 - (a) Sketch the graph of y = -g(x).
 - (b) On the same diagram, sketch the graph of y = 3 g(x).

- **5.** A, B and C have coordinates (-3, 4, 7), (-1, 8, 3) and (0, 10, 1) respectively.
 - (a) Show that A, B and C are collinear.

3

(b) Find the coordinates of D such that $\overrightarrow{AD} = 4\overrightarrow{AB}$.

2

6. Given that $y = 3\sin(x) + \cos(2x)$, find $\frac{dy}{dx}$.

3

[Turn over for Questions 7 to 11 on Page four

Marks

7. Find
$$\int_0^2 \sqrt{4x+1} \ dx$$
.

5

(a) Write $x^2 - 10x + 27$ in the form $(x + b)^2 + c$.

2

4

- (b) Hence show that the function $g(x) = \frac{1}{3}x^3 5x^2 + 27x 2$ is always increasing.

Solve the equation $\log_2(x+1) - 2\log_2(3) = 3$. 9.

10. In the diagram angle DEC = angle CEB = x° and angle CDE = angle BEA = 90° . CD = 1 unit; DE = 3 units. By writing angle DEA in terms of x° , find the exact value of cos(DÊA).

7

3

5

- The diagram shows a parabola passing through the points (0, 0), (1, -6) and (2, 0).
- (2, 0)
- (a) The equation of the parabola is of the form y = ax(x - b). Find the values of a and b.

(1, -6)

(b) This parabola is the graph of y = f'(x). Given that f(1) = 4, find the formula for f(x).

[END OF QUESTION PAPER]