X100/301

NATIONAL QUALIFICATIONS 2003 WEDNESDAY, 21 MAY 9.00 AM - 10.10 AM

MATHEMATICS HIGHER Units 1, 2 and 3 Paper 1 (Non-calculator)

Read Carefully

- 1 Calculators may NOT be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$=2\cos^2 A-1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin <i>ax</i>	$-\frac{1}{a}\cos ax + C$
cosax	$\frac{1}{a}\sin ax + C$

ALL questions should be attempted.

Marks

- Find the equation of the line which passes through the point (-1, 3) and is 3/ perpendicular to the line with equation 4x + y - 1 = 0.

(a) Write $f(x) = x^2 + 6x + 11$ in the form $(x + a)^2 + b$.

(b) Hence or otherwise sketch the graph of y = f(x).

- Vectors \mathbf{u} and \mathbf{v} are defined by $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$. Determine whether or not \boldsymbol{u} and \boldsymbol{v} are perpendicular to each other.

- A recurrence relation is defined by $u_{n+1} = pu_n + q$, where $-1 and <math>u_0 = 12$.

(a) If $u_1 = 15$ and $u_2 = 16$, find the values of p and q.

(

(b) Find the limit of this recurrence relation as $n \to \infty$.

Given that $f(x) = \sqrt{x} + \frac{2}{x^2}$, find f'(4).

A and B are the points (-1, -3, 2) and (2, -1, 1) respectively. B and C are the points of trisection of AD, that is AB = BC = CD. Find the coordinates of D.

Show that the line with equation y = 2x + 1 does not intersect the parabola $\frac{5}{5}$ with equation $y = x^2 + 3x + 4$.

8. Find $\int_{0}^{1} \frac{dx}{(3x+1)^{\frac{1}{2}}}$.

- Functions $f(x) = \frac{1}{x-4}$ and g(x) = 2x + 3 are defined on suitable domains.
- 23

(a) Find an expression for h(x) where h(x) = f(g(x)).

(b) Write down any restriction on the domain of h.

[Turn over for Questions 10 to 12 on Page four

10. A is the point (8, 4). The line OA is inclined at an angle p radians to the x-axis.

- (a) Find the exact values of:
 - (i) $\sin(2p)$;
 - (ii) cos(2p).

The line OB is inclined at an angle 2p radians to the x-axis.

(b) Write down the exact value of the gradient of OB.

- 11. O, A and B are the centres of the three circles shown in the diagram below.
 - The two outer circles are congruent and each touches the smallest circle.
 - Circle centre A has equation $(x-12)^2 + (y+5)^2 = 25$.
 - The three centres lie on a parabola whose axis of symmetry is shown by the broken line through A.

- (a) (i) State the coordinates of A and find the length of the line OA.
 - (ii) Hence find the equation of the circle with centre B.
- (3) 5
- The equation of the parabola can be written in the form y = px(x + q). Find the values of p and q.
- 12. Simplify $3 \log_e(2e) 2 \log_e(3e)$ expressing your answer in the form $A + \log_e B \log_e C$ where A, B and C are whole numbers.

° 4

[END OF QUESTION PAPER]

17