X100/303

NATIONAL QUALIFICATIONS 2003 WEDNESDAY, 21 MAY 10.30 AM - 12.00 NOON MATHEMATICS HIGHER Units 1, 2 and 3 Paper 2

Read Carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
$\cos ax$	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cosax	$\frac{1}{a}\sin ax + C$

ALL questions should be attempted.

Marks

1. $f(x) = 6x^3 - 5x^2 - 17x + 6$.

(a) Show that (x-2) is a factor of f(x).

(b) Express f(x) in its fully factorised form.

4

3

2. The diagram shows a sketch of part of the graph of a trigonometric function whose equation is of the form $y = a \sin(bx) + c$.

Determine the values of a, b and c.

3. The incomplete graphs of $f(x) = x^2 + 2x$ and $g(x) = x^3 - x^2 - 6x$ are shown in the diagram. The graphs intersect at A(4, 24) and the origin.

Find the shaded area enclosed between the curves.

4. (a) Find the equation of the tangent to the curve with equation $y = x^3 + 2x^2 - 3x + 2$ at the point where x = 1.

5

(b) Show that this line is also a tangent to the circle with equation $x^2 + y^2 - 12x - 10y + 44 = 0$ and state the coordinates of the point of contact.

6

[Turn over

5. The diagram shows the graph of a function f.

f has a minimum turning point at (0, -3) and a point of inflexion at (-4, 2).

- (a) Sketch the graph of y = f(-x).
- (b) On the same diagram, sketch the graph of y = 2f(-x).

6. If $f(x) = \cos(2x) - 3\sin(4x)$, find the exact value of $f'(\frac{\pi}{6})$.

4

- 7. Part of the graph of $y = 2\sin(x^{\circ}) + 5\cos(x^{\circ})$ is shown in the diagram.
 - (a) Express $y = 2\sin(x^{\circ}) + 5\cos(x^{\circ})$ in the form $k\sin(x^{\circ} + a^{\circ})$ where k > 0 and $0 \le a < 360$.
 - (b) Find the coordinates of the minimum turning point P.

8. An open water tank, in the shape of a triangular prism, has a capacity of 108 litres. The tank is to be lined on the inside in order to make it watertight.

The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length x cm. The tank has a length of l cm.

- (a) Show that the surface area to be lined, $A \text{ cm}^2$, is given by $A(x) = x^2 + \frac{432000}{x}$.
- (b) Find the value of x which minimises this surface area.

5

3

Marks

5

9. The diagram shows vectors \mathbf{a} and \mathbf{b} . If $|\mathbf{a}| = 5$, $|\mathbf{b}| = 4$ and $\mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) = 36$, find the size of the acute angle θ between \mathbf{a} and \mathbf{b} .

- 10. Solve the equation $3\cos(2x) + 10\cos(x) 1 = 0$ for $0 \le x \le \pi$, correct to 2 decimal places.
- 11. (a) (i) Sketch the graph of y = a^x + 1, a > 2.
 (ii) On the same diagram, sketch the graph of y = a^{x+1}, a > 2.
 2
 - (b) Prove that the graphs intersect at a point where the x-coordinate is $\log_a \left(\frac{1}{a-1}\right)$.

[END OF QUESTION PAPER]

[BLANK PAGE]