X100/301

NATIONAL QUALIFICATIONS 2002 MONDAY, 27 MAY 9.00 AM - 10.10 AM MATHEMATICS HIGHER Units 1, 2 and 3 Paper 1 (Non-calculator)

Read Carefully

- 1 Calculators may <u>NOT</u> be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
$\cos ax$	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cosax	$\frac{1}{a}\sin ax + C$

ALL questions should be attempted.

Marks

- 1. The point P(2, 3) lies on the circle $(x + 1)^2 + (y 1)^2 = 13$. Find the equation of the tangent at P.

4

- 2. The point Q divides the line joining P(-1, -1, 0) to R(5, 2, -3) in the ratio 2 : 1. Find the coordinates of Q.
- 3
- 3. Functions f and g are defined on suitable domains by $f(x) = \sin(x^{\circ})$ and g(x) = 2x.
 - (a) Find expressions for:
 - (i) f(g(x));
 - (ii) g(f(x)).

2

(b) Solve 2f(g(x)) = g(f(x)) for $0 \le x \le 360$.

- 5
- **4.** Find the coordinates of the point on the curve $y = 2x^2 7x + 10$ where the tangent to the curve makes an angle of 45° with the positive direction of the x-axis.
- 4

5. In triangle ABC, show that the exact value of sin(a+b) is $\frac{2}{\sqrt{5}}$.

6. The graph of a function f intersects the x-axis at (-a, 0) and (e, 0) as shown.

There is a point of inflexion at (0, b) and a maximum turning point at (c, d).

Sketch the graph of the derived function f'.

[Turn over for Questions 7 to 11 on Page four

7. (a) Express $f(x) = x^2 - 4x + 5$ in the form $f(x) = (x - a)^2 + b$.

2

- (b) On the same diagram sketch:
 - (i) the graph of y = f(x);
 - (ii) the graph of y = 10 f(x).

4

(c) Find the range of values of x for which 10 - f(x) is positive.

1

- The diagram shows the graph of a cosine function from 0 to π .

- (a) State the equation of the graph.
- (b) The line with equation $y = -\sqrt{3}$ intersects this graph at points A

Find the coordinates of B.

and B.

(a) Write $\sin(x) - \cos(x)$ in the form $k\sin(x-a)$ stating the values of k and a where k > 0 and $0 \le a \le 2\pi$.

4

(b) Sketch the graph of $y = \sin(x) - \cos(x)$ for $0 \le x \le 2\pi$, showing clearly the graph's maximum and minimum values and where it cuts the x-axis and the y-axis.

3

(a) Find the derivative of the function $f(x) = (8 - x^3)^{\frac{1}{2}}$, x < 2.

2

(b) Hence write down $\int \frac{x^2}{(8-x^3)^{\frac{1}{2}}} dx$.

1

The graph illustrates the law $y = kx^n$. 11. If the straight line passes through A(0.5, 0) and B(0, 1), find the values of k and n.

[END OF QUESTION PAPER]